Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(46): 102641-102652, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37668780

ABSTRACT

This study was intended to valorize a floated sludge of a poultry slaughterhouse using it as a precursor to producing char and activated carbon, which were tested as adsorbents in removing ketoprofen and diclofenac sodium from the water. The addition of zinc chloride or calcium hydroxide was determinant for forming a porous carbonaceous structure with a high surface area in AC-FSP (656.54 m2 g-1), differently from that exhibited by the CHAR-FSP (8.11 m2 g-1). Kinetic and equilibrium studies indicated that the pseudo-second-order and the Sips models were suitable. The AC- FSP maximum adsorption capacity for ketoprofen and diclofenac sodium was 124.98 mg g-1 and 138.32 mg g-1, respectively. The adsorption was a spontaneous and endothermic process. It was concluded that AC-FSP is a more efficient and promising adsorbent than CHAR-FSP for the adsorption of drugs in contaminated wastewater. In addition, AC-FSP can be reused, maintaining good adsorption levels for about 5 cycles. Therefore, this study is aligned with the 2030 Agenda for global sustainability since converting waste (valueless) into an adsorbent is also directly linked to the circular economy and neutral carbon.


Subject(s)
Ketoprofen , Water Pollutants, Chemical , Animals , Sewage , Diclofenac , Charcoal/chemistry , Adsorption , Poultry , Water Pollutants, Chemical/analysis , Kinetics , Pharmaceutical Preparations , Hydrogen-Ion Concentration
2.
Environ Technol ; 44(10): 1426-1437, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34738879

ABSTRACT

Oil emulsified in water is one of the most difficult mixtures to treat due to the good stability of emulsions, so there is a growing demand for more efficient methods for separating immiscible oil/water mixtures. In this context, the focus of this study was to obtain an adsorbent for the selective treatment of a simulated oily wastewater. To this aim, a modified hydrotalcite sample with hydrophobic and magnetic characteristics was prepared and characterized. Initially, the effect of sodium dodecyl sulfate (SDS) amount on the adsorbent characteristics was evaluated (266-800 mgSDS g-1LDH). The hydrophobic hydrotalcite (LDH-SDS) containing 533 mgSDS g-1LDH (LDH-SDS2) presented a higher interlayer space where the surfactant molecules were arranged perpendicular to the lamellae, allowing better access to the hydrotalcite pores and facilitating the selective adsorption of oil compounds. Moreover, the synergistic association of hydrophobic properties with super-wetting and effective adhesion oil to Fe3O4 favoured the selective adsorption of the simulated oily wastewater onto the hydrophobic and magnetic hydrotalcite (LDH-MSDS), facilitating the post-treatment separation. The kinetic analysis demonstrated that the adsorption equilibrium was attained in 120 min and the pseudo-second order model was the most suitable for predicting the removal of total organic carbon (TOC) from the simulated oily wastewater. The Langmuir model described very well the equilibrium experimental data, with a maximum adsorption capacity for TOC removal using LDH-MSDS of 659.9 mg g-1. Therefore, the modified hydrotalcite prepared in this study showed intrinsic characteristics that make it a promising adsorbent for the selective treatment of oily wastewaters.


Subject(s)
Wastewater , Water Pollutants, Chemical , Kinetics , Aluminum Hydroxide/analysis , Oils , Adsorption , Magnetic Phenomena , Water Pollutants, Chemical/chemistry
3.
Environ Sci Pollut Res Int ; 25(7): 6429-6442, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29249030

ABSTRACT

The treatment of colored effluents containing Procion Red dye (PR) was investigated using H2SO4 and HNO3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H2SO4 and AS-HNO3) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L-1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g-1 for AS-H2SO4 and AS-HNO3, respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 < ΔG 0 < - 13.2 kJ mol-1), and exothermic (ΔH 0 values of - 29 and - 55 kJ mol-1). AS-H2SO4 and AS-HNO3 were adequate to treat dye house effluents, attaining color removal percentages of 82 and 75%. Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.


Subject(s)
Nitric Acid/chemistry , Persea/chemistry , Sulfuric Acids/chemistry , Triazines/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biomass , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL