Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1421, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446825

ABSTRACT

Gut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Subject(s)
Firmicutes , Gastrointestinal Microbiome , Intestinal Mucosa , Spirochaetaceae , Zika Virus Infection , Zika Virus/metabolism , Animals , Firmicutes/classification , Firmicutes/growth & development , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Mice , Spirochaetaceae/classification , Spirochaetaceae/growth & development , Zika Virus Infection/metabolism , Zika Virus Infection/microbiology
2.
Methods Mol Biol ; 2142: 81-92, 2020.
Article in English | MEDLINE | ID: mdl-32367360

ABSTRACT

Inflammation is part of a defense reaction of live tissues that is triggered by pathogens, chemical reagents, trauma, and radiation. Understanding the inflammatory process triggered by Zika virus (ZIKV) is important to better understand the pathogen-host interaction. The evaluation of this process can be done using tools such as enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription PCR (RT-qPCR). Both techniques have been an indispensable tool not just for immunologists but for all interested in understanding the inflammatory process.


Subject(s)
Inflammation/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Zika Virus/physiology , Animals , Blood-Testis Barrier/immunology , Blood-Testis Barrier/metabolism , Blood-Testis Barrier/virology , Cell Death , Enzyme-Linked Immunosorbent Assay/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Male , Mice , Orchitis/diagnosis , Orchitis/genetics , Orchitis/immunology , Orchitis/virology , Testis/pathology , Testis/physiology , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/genetics , Zika Virus Infection/immunology , Zika Virus Infection/metabolism
3.
Sci Rep ; 9(1): 20119, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882804

ABSTRACT

Zika virus (ZIKV) has a strong tropism for the nervous system and has been related to post-infection neurological syndromes. Once neuronal cells are infected, the virus is capable of modulating cell metabolism, leading to neurotoxicity and cellular death. The negative effect of ZIKV in neuron cells has been characterized. However, the description of molecules capable of reversing these cytotoxic effects is still under investigation. In this context, it has been largely demonstrated that docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, is highly neuroprotective. Here, we hypothesized that DHA's neuroprotective proprieties could have an influence on ZIKV-induced neurotoxicity in SH-SY5Y cells. Our data showed that pre-treatment of SH-SY5Y cells with DHA increased the cell viability and proliferation in ZIKV-infected cells. Moreover, DHA triggered an anti-inflammatory response in those infected cells. Besides, DHA was capable of restoring mitochondria function and number in ZIKV-infected SH-SY5Y cells. In addition, cells pre-treated with DHA prior to ZIKV infection presented a lower viral load at different times of infection. Taking together, these results demonstrated that DHA has a potential anti-inflammatory and neuroprotective effect against ZIKV infection in these neuron-like cells and could be a useful tool in the treatment against this virus.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fatty Acids, Omega-3/pharmacology , Neuroprotective Agents/pharmacology , Zika Virus/drug effects , Zika Virus/physiology , Cell Line, Tumor , Cell Survival/drug effects , Cytopathogenic Effect, Viral/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Virus Replication/drug effects , Zika Virus Infection/virology
4.
J Infect Dis ; 219(3): 365-374, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30053014

ABSTRACT

Background: Zika virus (ZIKV) infection has been associated with prolonged viral excretion in human semen and causes testicular atrophy and infertility in 10-week-old immunodeficient mice. Methods: Male IFNAR-/- mice, knockout for type I interferon receptor, were immunized with GLS-5700, a deoxyribonucleic acid-based vaccine, before a subcutaneous ZIKV challenge with 6 × 105 plaque-forming units at 13 weeks of age. On day 28 postinfection, testes and epididymides were collected in some mice for histological and functional analyses, whereas others were mated with naive female wild-type C57BL/6J. Results: Although all mice challenged with ZIKV developed viremia, most of them were asymptomatic, showed no weight loss, and survived infection. On day 28 postinfection, none of the unvaccinated, infected mice (9 of 9) exhibited abnormal spermatozoa counts or motility. However, 33% (3 of 9) and 36% (4 of 11) of mated males from this group were infertile, from 2 independent studies. Contrarily, males from the noninfected and the vaccinated, infected groups were all fertile. On days 75 and 207 postinfection, partial recovery of fertility was observed in 66% (2 of 3) of the previously infertile males. Conclusions: This study reports the effects of ZIKV infection on male fertility in a sublethal, immunodeficient mouse model and the efficacy of GLS-5700 vaccination in preventing male infertility.


Subject(s)
DNA/pharmacology , Infertility, Male/drug therapy , Infertility, Male/etiology , Infertility, Male/prevention & control , Zika Virus Infection/complications , Animals , Atrophy/etiology , Disease Models, Animal , Epididymis/pathology , Female , Immunization , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Receptor, Interferon alpha-beta/genetics , Semen , Sexual Behavior, Animal , Sperm Count , Sperm Motility , Spermatozoa , Testis/pathology , Vaccination
5.
Vaccines (Basel) ; 6(3)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30217027

ABSTRACT

Zika virus is an arbovirus that has rapidly spread within the Americas since 2014, presenting a variety of clinical manifestations and neurological complications resulting in congenital malformation, microcephaly, and possibly, in male infertility. These significant clinical manifestations have led investigators to develop several candidate vaccines specific to Zika virus. In this review we describe relevant targets for the development of vaccines specific for Zika virus, the development status of various vaccine candidates and their different platforms, as well as their clinical progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...