Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864594

ABSTRACT

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

2.
Ecotoxicology ; 33(1): 104-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236330

ABSTRACT

Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L-1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L-1); ROS production (0.50 mg Co L-1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L-1. Ni exposure decreased ROS and cell density (0.35 mg Ni L-1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.


Subject(s)
Chlorophyceae , Microalgae , Water Pollutants, Chemical , Humans , Nickel/toxicity , Chlorophyll A/pharmacology , Cobalt/toxicity , Reactive Oxygen Species , Metals , Carbohydrates/pharmacology , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Aquat Toxicol ; 244: 106077, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35091369

ABSTRACT

Metals occur simultaneously in the environment, and therefore it is important to know their toxicity and mechanism of action when associated with another metal. Furthermore, anthropogenic actions increase their concentrations in the environment where they can interact and undergo transformations that can even increase their toxicity. This study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co), isolated and combined, on the microalgae Raphidocelis subcapitata. Regarding the toxicity of isolated metals, the IC5096 h was 0.08 mg L-1 of Cd and 0.16 mg L-1 of Co. Cell density decreased at all concentrations of the Cd tested. The parameters related to cell size, cell complexity and mean cell chlorophyll a (Chl a) fluorescence were significantly affected by both metals. According to species sensitivity curves (SSD), the microalgae R. subcapitata was the second most sensitive organism to Co exposure and the tenth concerning Cd. Metal mixture data were best fitted to the concentration addition (CA) model and dose-ratio dependence (DR) deviation, showing synergism at high concentrations of Co and low concentrations of Cd. Besides that, antagonism was observed at low concentrations of Co and high concentrations of Cd. Photosynthetic performance, assessed by maximum quantum yield (ΦM) and oxygen evolving complex (OEC), presented antagonism effects for both analyzed parameters. Thus, the mixture of Cd and Co showed synergistic and antagonistic interactions for the parameters analyzed in R. Subcapitata, indicating the importance of understanding the mechanisms of toxicity of metal mixtures in phytoplankton.


Subject(s)
Chlorophyceae , Water Pollutants, Chemical , Cadmium/toxicity , Chlorophyll A , Cobalt/toxicity , Ecotoxicology , Photosynthesis , Water Pollutants, Chemical/toxicity
4.
Zool Stud ; 54: e20, 2015.
Article in English | MEDLINE | ID: mdl-31966107

ABSTRACT

BACKGROUND: Cladocera is an important group of freshwater zooplankton, and the species plays an important role in energy transfer and in aquatic food webs. Oxyurella longicaudis is a Chydoridae species that has been recorded in North and South America. The aim of this study is to investigate the life cycle aspects of parthenogenetic females of O. longicaudis cultured in laboratory under controlled conditions: temperature (23°C ± 05°C), photoperiod (12 h light/12 h dark), food supply, and reconstituted water. RESULTS: Embryonic development duration (2.3 ± 0.5 days), post-embryonic development (5.2 ± 0.69 days), mean fecundity (two eggs female-1 brood-1), total egg production (22.55 ± 3.98 eggs), average longevity (58 days), and body growth of the species were recorded. We also report the first DNA barcode for O. longicaudis isolated in Brazil, which will allow for easy identification in future zooplankton community studies. The analysis shows a genetic divergence of around 7% between our Brazilian isolate and O. longicaudisisolates from Mexico. CONCLUSIONS: The time of embryonic and post-embryonic development of O. longicaudis was higher than that of the other species of the same family, which contributed to lower total egg production throughout its life cycle. The genetic divergence appears to be sufficient to classify the two isolates as different species.

5.
PLoS One ; 9(5): e97050, 2014.
Article in English | MEDLINE | ID: mdl-24878503

ABSTRACT

Knowledge of reproductive rates and life cycle of the Cladocera species is essential for population dynamic studies, secondary production and food webs, as well as the management and preservation of aquatic ecosystems. The present study aimed to understand the life cycle and growth of Alona iheringula Kotov & Sinev, 2004 (Crustacea, Anomopoda, Chydoridae), a Neotropical species, as well as its DNA barcoding, providing new information on the Aloninae taxonomy. The specimens were collected in the dammed portion of the Cabo Verde River (21°26'05″ S and 46°10'57″ W), in the Furnas Reservoir, Minas Gerais State, Brazil. Forty neonates were observed individually two or three times a day under controlled temperature (25±1°C), photoperiod (12 h light/12 h dark) and feeding (Pseudokirchneriella subcapitata at a concentration of 105 cells.mL-1 and a mixed suspension of yeast and fish feed in equal proportion). Individual body growth was measured daily under optical microscope using a micrometric grid and 40× magnification. The species had a mean size of 413(±29) µm, a maximum size of 510 µm and reached maturity at 3.24(±0.69) days of age. Mean fecundity was 2 eggs per female per brood and the mean number of eggs produced per female during the entire life cycle was 47.6(±6.3) eggs per female. The embryonic development time was 1.79(±0.23) days and the maximum longevity was 54 days. The species had eight instars throughout its life cycle and four instars between neonate and primipara stage. The present study using molecular data (a 461 bp smaller COI fragment) demonstrated a deep divergence in the Aloninae subfamily.


Subject(s)
Cladocera/classification , Cladocera/growth & development , DNA Barcoding, Taxonomic , Life Cycle Stages , Animals , Biodiversity , Cladocera/enzymology , Cladocera/genetics , Electron Transport Complex IV/genetics , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...