Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod ; 20(2): e20230060, 2023.
Article in English | MEDLINE | ID: mdl-37720728

ABSTRACT

Methane emission from beef and dairy cattle combined contributes around 4.5-5.0% of total anthropogenic global methane. In addition to enteric methane (CH4) produced by the rumen, cattle production also contributes carbon dioxide (CO2) (feed), nitrous oxide (N2O) (feed production, manure) and other CH4 (manure) to the total greenhouse gas (GHG) budget of beef and dairy production systems. The relative contribution in standard dairy systems is typically enteric CH4 58%, feed 29% and manure 10%. Herds with low production efficiency can have an enteric CH4 contribution up to 90%. Digestibility of feed can impact CH4 emission intensity. Low fertility herds also have a greater enteric CH4 contribution. Animals with good feed conversion efficiency have a lower emission intensity of CH4/kg of meat or milk. Feed efficient heifers tend to be lean and have delayed puberty. Fertility is a major driver of profit in both beef and dairy cattle, and it is highly important to apply multi-trait selection when shifting herds towards improved efficiency and reduced CH4. Single nucleotide polymorphisms (SNPs) have been identified for feed efficiency in cattle and are used in genomic selection. SNPs can be utilized in artificial insemination and embryo transfer to increase the proportion of cattle that have the attributes of efficiency, fertility and reduced enteric CH4. Prepubertal heifers genomically selected for favourable traits can have oocytes recovered to produce IVF embryos. Reproductive technology is predicted to be increasingly adopted to reduce generation interval and accelerate the rate of genetic gain for efficiency, fertility and low CH4 in cattle. The relatively high contribution of cattle to anthropogenic global methane has focussed attention on strategies to reduce enteric CH4 without compromising efficiency and fertility. Assisted reproductive technology has an important role in achieving the goal of multiplying and distributing cattle that have good efficiency, fertility and low CH4.

2.
Anim Reprod ; 20(2): e20230092, 2023.
Article in English | MEDLINE | ID: mdl-37720727

ABSTRACT

Currently, gonadotropin products (follicle stimulating hormone, FSH, and luteinizing hormone, LH) used in animal reproduction are produced by extraction and purification from abattoir-derived pituitary glands. This method, relying on animal-derived materials, carries the potential risk of hormone contamination and pathogen transmission. Additionally, chorionic gonadotropins are extracted from the blood of pregnant mares (equine chorionic gonadotropin; eCG) or the urine of pregnant women (human chorionic gonadotropin; hCG). However, recent advancements have introduced recombinant gonadotropins for assisted animal reproduction therapies. The traditional use of FSH for superovulation has limitations, including labor requirements and variability in superovulation response, affecting the success of in vivo (SOV) and in vitro (OPU/IVEP) embryo production. FSH treatment for superstimulation before OPU can promote the growth of a homogenous follicular population and the recovery of competent oocytes suitable for IVEP procedures. At present, a single injection of a preparation of long-acting bovine recombinant FSH (rFSH) produced similar superovulation responses resulting in the production of good-quality in vivo and in vitro embryos. Furthermore, the treatment with eCG at FTAI protocol has demonstrated its efficacy in promoting follicular growth, ovulation, and P/AI, mainly in heifers and anestrous cows. Currently, treatment with recombinant glycoproteins with eCG-like activity (r-eCG) have shown promising results in increasing follicular growth, ovulation, and P/AI in cows submitted to P4/E2 -based protocols. Bovine somatotropin (bST) is a naturally occurring hormone found in cows. Recombinant bovine somatotropin (rbST), produced through genetic engineering techniques, has shown potential in enhancing reproductive outcomes in ruminants. Treatment with rbST has been found to improve P/IA, increase donor embryo production, and enhance P/ET in recipients. The use of recombinant hormones allows to produce non-animal-derived products, offering several advantages in assisted reproductive technologies for ruminants. This advancement opens up new possibilities for improving reproductive efficiency and success rates in the field of animal reproduction.

3.
Anim Reprod ; 16(3): 364-375, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-32435280

ABSTRACT

Artificial insemination (AI) and embryo transfer (ET) are the most widely used biotechnologies in the world with the goal of increasing genetic gain and improving reproductive efficiency of beef and dairy herds. The protocols for ovulation synchronization for timed AI (TAI) or ET (TET) are tools that allow artificial insemination or transfer of a high number of embryos in a pre-established moment and without the necessity of estrous detection. Currently, 86% of inseminations in Brazil are performed using TAI (13.6 million TAI out of a total of 15.4 million doses of semen marketed in 2018). With the use of TAI, it was possible to verify that the percentage of artificially inseminated females in Brazil went from 5.8% in 2002 to 13.1% in 2018. The ET market also presented considerable growth in the last 20 years. There was an increase of approximately 8 fold in the number of produced embryos, escalating from 50,000 in 1999 to 375,000 in 2017. In this period, there was a significant increase on the in vitro embryo production, which represented 92.1% of embryos produced in Brazil in 2017. Also, in this period, there was an increase on the embryo production of dairy breeds and reduction on the embryo production of zebu breeds in comparison to data from the early 2000's. TET increases significantly the number of recipients suitable to receive an embryo. After synchronization, 75 to 85% of recipients present a suitable CL for ET without estrous detection. Currently, many synchronization and resynchronization protocols for TAI/TET have been studied to attend different managements, breeds and animal categories, with predictable and satisfactory results. With the intensification of the use of these biotechnologies, it is possible to obtain elevated reproductive efficiency with increase on the genetic gain, which determines greater productivity and economic return for dairy and beef farms. However, the challenge to keep the market growing in the next decade could depend on some factors, such as: increase of the extension services for producers and of the extension training for specialists, improvement of the technological advances to develop more efficient and cost-effective products and practical protocols, increase the integration between universities, research institutes, veterinarians and industries and also, asses market demand for production of animal protein with higher quality, efficiency and environmental and economic sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL
...