Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 73(10): 1537-47, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17291457

ABSTRACT

Human American trypanosomiasis is resurgent in Latin Americans, and new drugs are urgently required as current medications suffer from a number of drawbacks. Some nitroheterocycles have been demonstrated to exert a potent activity against trypanosomes. However, host toxicity issues halted their development as trypanocides. As part of the efforts to develop new compounds in order to treat parasitic infections, it is important to define their structure-activity relationship. In this study, 5-nitromegazol and two of its analogues, 4-nitromegazol, and 1-methyl-5-nitro-2-imidazolecarboxaldehyde 5-nitroimidazole-thiosemicarbazone, were tested and compared for in vitro induction of DNA damage in human leukocytes by the comet assay, performed at different pHs to better identify the types of damage. Specific oxidatively generated damage to DNA was also measured by using the comet assay with endonucleases. DNA damage was found in 5-nitromegazol-treated cells: oxidative stress appeared as the main source of DNA damage. 4-Nitromegazol did not produce any significant effect, thus confirming that 4-nitroimidazoles isomers have no important biological activity. The 5-nitroimidazole-thiosemicarbazone induced DNA damage with a higher efficiency than 5-nitromegazol. The central role in the reduction process played by the acidic hydrazine proton present in the thiosemicarbazone group but not in the cyclic (thiadiazole) form can contribute to rationalise our results. Given its versatility, thiosemicarbazone moiety could be involved in different reactions with nitrogenous bases (nucleophilic and/or electrophilic attacks).


Subject(s)
DNA Damage/drug effects , DNA Fragmentation/drug effects , Leukocytes/drug effects , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Humans , Leukocytes/cytology
2.
Appl Biochem Biotechnol ; 105 -108: 853-65, 2003.
Article in English | MEDLINE | ID: mdl-12721423

ABSTRACT

To improve the selectivity of glucose-6-phosphate dehydrogenase (G6PDH) extraction by an aqueous two-phase system, a simple and inexpensive affinity aqueous two-phase system using unbound reactive triazine dyes as ligands was introduced. In a polyethylene glycol (PEG)/hydroxypropyl starch (PES) system, the unbound free triazine dyes, Cibacron Blue F3GA and Procion Red HE3B, partitioned unevenly in the top PEG-rich phase and thus showed an affinity effect on G6PDH, but no influence on hexokinase. The various parameters investigated were pH of the system, buffers, molecular weight of PEG, and ligand type and concentration. A two-step affinity extraction process was established for the purification of G6PDH from baker's yeast. The total yield of G6PDH was 66.9% and purification factor was 2.35.


Subject(s)
Coloring Agents , Glucosephosphate Dehydrogenase/isolation & purification , Glucosephosphate Dehydrogenase/metabolism , Saccharomyces cerevisiae/enzymology , Triazines , Chromatography, Affinity , Hexokinase/metabolism , Kinetics , Ligands , Molecular Weight , Polyethylene Glycols , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...