Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 101(7): 327-339, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36988145

ABSTRACT

Cerebral palsy (CP) is characterized by motor disorders, including deficits in locomotor activity, coordination, and balance. Selective serotonin reuptake inhibitors have been shown to play an important role in brain plasticity. This study investigates the effect of neonatal treatment using fluoxetine on locomotor activity and histomorphometric parameters of the primary somatosensory cortex (S1) in rats submitted to an experimental model of CP. CP was found to reduce bodyweight and locomotion parameters and also to increase the glia/neuron index in the S1. Administration of fluoxetine 10 mg/kg reduced bodyweight, impaired locomotor activity parameters, and increased the number of glial cells and the glia/neuron ratio in the S1 in rats with CP. However, treatment with fluoxetine 5 mg/kg was not found to be associated with adverse effects on locomotor activity and seems to improve histomorphometric parameters by way of minor changes in the S1 in animals with CP. These results thus indicate that experimental CP, in combination with the use of a high dose of fluoxetine (10 mg/kg), impairs locomotor and histomorphometric parameters in the S1, while treatment with a low dose of fluoxetine (5 mg/kg) averts the negative outcomes associated with a high dose of fluoxetine in relation to these parameters but produces no protective effect.


Subject(s)
Cerebral Palsy , Fluoxetine , Rats , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Cerebral Palsy/drug therapy , Motor Activity , Neurons , Neuroglia , Locomotion
2.
Int J Dev Neurosci ; 83(1): 80-97, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36342836

ABSTRACT

Cerebral palsy (CP) is characterized by brain damage at a critical period of development of the central nervous system, and, as a result, motor, behavioural and learning deficits are observed in those affected. Flavonoids such as kaempferol have demonstrated potential anti-inflammatory and neuroprotective properties for neurological disorders. This study aimed to assess the effects of neonatal treatment with kaempferol on the body development, grip strength, gait performance and morphological and biochemical phenotype of skeletal muscle in rats subjected to a model of CP. The groups were formed by randomly allocating male Wistar rats after birth to four groups as follows: C = control treated with vehicle, K = control treated with kaempferol, CP = CP treated with vehicle and CPK = CP treated with kaempferol. The model of CP involved perinatal anoxia and sensorimotor restriction of the hind paws during infancy, from the second to the 28th day of postnatal life. Treatment with kaempferol (1 mg/kg) was performed intraperitoneally during the neonatal period. Body weight and length, muscle strength, gait kinetics and temporal and spatial parameters were evaluated in the offspring. On the 36th day of postnatal life, the animals were euthanized for soleus muscle dissection. The muscle fibre phenotype was assessed using the myofibrillar ATPase technique, and the muscle protein expression was measured using the Western blot technique. A reduction in the impact of CP on body phenotype was observed, and this also attenuated deficits in muscle strength and gait. Treatment also mitigated the impact on muscle phenotype by preventing a reduction in the proportion of oxidative fibres and in the histomorphometric parameters in the soleus muscle of rats in the CP group. The results demonstrate that neonatal treatment with kaempferol attenuated gait deficits and impaired muscle strength and muscle maturation in rats subjected to a model of CP.


Subject(s)
Cerebral Palsy , Pregnancy , Female , Animals , Rats , Male , Animals, Newborn , Rats, Wistar , Kaempferols/pharmacology , Kaempferols/therapeutic use , Kaempferols/metabolism , Gait/physiology , Muscle, Skeletal/metabolism , Phenotype , Muscle Strength
3.
J Neurosci Methods ; 360: 109250, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34116077

ABSTRACT

BACKGROUND: Different approaches to reproduce cerebral palsy (CP) in animals, contribute to the knowledge of the pathophysiological mechanism of this disease and provide a basis for the development of intervention strategies. Locomotion and coordination are the main cause of disability in CP, however, few studies highlight the quantitative differences of CP models, on locomotion parameters, considering the methodologies to cause brain lesions in the perinatal period. METHODS: Studies with cerebral palsy animal models that assess locomotion parameters were systematically retrieved from Medline/PubMed, SCOPUS, LILACS, and Web of Science. Methodological evaluation of included studies and quantitative assessment of locomotion parameters were performed after eligibility screening. RESULTS: CP models were induced by hypoxia-ischemia (HI), Prenatal ischemia (PI), lipopolysaccharide inflammation (LPS), intraventricular haemorrhage (IVH), anoxia (A), sensorimotor restriction (SR), and a combination of different models. Overall, 63 studies included in qualitative synthesis showed a moderate quality of evidence. 16 studies were included in the quantitative meta-analysis. Significant reduction was observed in models that combined LPS with HI related to distance traveled (SMD -7.24 95 % CI [-8.98, -5.51], Z = 1.18, p < 0.00001) and LPS with HI or anoxia with sensory-motor restriction (SMD -6.01, 95 % CI [-7.67, -4.35], Z = 7.11), or IVH (SMD -4.91, 95 % CI [-5.84, -3.98], Z = 10.31, p < 0.00001) related to motor coordination. CONCLUSION: The combination of different approaches to reproduce CP in animals causes greater deficits in locomotion and motor coordination from the early stages of life to adulthood. These findings contribute to methodological refinement, reduction, and replacement in animal experimentation, favoring translational purposes.


Subject(s)
Brain Injuries , Cerebral Palsy , Animals , Animals, Newborn , Disease Models, Animal , Female , Locomotion , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...