Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 177: 113877, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225140

ABSTRACT

This study investigated the physical modifications by high hydrostatic pressure (HHP) at 600 MPa for 30 min/30 °C, annealing (AN) at 50 °C/24 h and the combination of both (HHP + AN and AN + HHP) applied to yellow bean starch to verify changes in morphology, X-ray diffraction, molecular order, thermal properties and pasting properties of native (NS) and modified starches. Morphological analysis showed loss of sphericity and increase in diameter with the appearance of pores on the surface after application of treatments. The AN starch showed lower values of syneresis, degree of double helix (DD), order (DO), and viscosity of the paste obtained by RVA. It exhibited a Vh-type classification with the appearance of the amylose-lipid complex. However, the gelatinization temperatures, as well as the enthalpy of gelatinization, were significantly higher. On the other hand, the starch treated with HHP showed a higher Setback (SB) value. The greatest modifications were found for the starches subjected to the combined treatments (AN + HHP) and (HHP + AN), where the order of the treatments was significant for the morpho-structural changes of yellow bean starch. According to the micrographs, the surface aspect was altered, with AN + HHP showing greater irregularities and flat yet irregular faces, as well as a larger granule diameter (147.05). The X-ray diffractogram showed a reduction in crystallinity from 28.14 % (NS) to 18.09 % (AN + HHP) and classified the starch as type "A". The double modification (HHP + AN and AN + HHP) reduced the gelatinization temperature and the enthalpy of gelatinization but had no effect on the bands of the FT-IR spectrum. There was only a reduction in the degree of order and the double helix. Finally, the treatment with AN + HHP is more effective as the gelatinization with AN facilitates the application of HHP. Both methods used are classified as physical (thermal and non-thermal), aiming to minimize environmental impacts and achieve faster and safer morpho-structural modification without leaving chemical residues in the products.


Subject(s)
Amylose , Starch , Starch/chemistry , Hydrostatic Pressure , Spectroscopy, Fourier Transform Infrared , Amylose/chemistry , Temperature
2.
J Sci Food Agric ; 103(1): 125-134, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35821573

ABSTRACT

BACKGROUND: Pretreatments of drying can represent an alternative to minimize the negative aspect process on the dry samples. Thus, the influence of ethanol (ET) and freezing (FG) as drying pretreatments was analyzed for slices of papaya. The slices (5 mm) were submitted for drying kinetics (60 °C and 1.5 m s-1 ). Drying kinetics experimental data were fitted using Page's model and a diffusive model with boundary condition of types I and III. Also the thermophysical properties (thermal conductivity and specific heat) were determined and finally, the kinetics of ultrasound-assisted (40 kHz and 132 W) extraction of total phenolic compounds (TPCs) were realized. RESULTS: The combined method (ET + FG) was more efficient in reducing the drying time of papaya slices (48%) and the model 2 simulating the boundary condition of the third type (type III) showed the best fit to the experimental data. Effective diffusivity and convective coefficient were higher for ET + FG, where the maximum reduction in water content was 91% compared to fresh slices. The pretreatments did not influence the thermal conductivity, however, they were significant in the specific heat and in the extraction of TPCs, being higher in the time of 180 min. CONCLUSION: It was confirmed in the results presented that the combined pretreatment ET + FG is the most viable for drying papaya slices. Furthermore, it was found to be the most efficient in minimizing the loss of TPCs. Therefore, this pretreatment has great potential for application in the development of high value-added foods. © 2022 Society of Chemical Industry.


Subject(s)
Carica , Ethanol , Freezing , Desiccation/methods , Phenols/chemistry , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...