Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Res ; 372(1): 135-147, 2018 04.
Article in English | MEDLINE | ID: mdl-29119327

ABSTRACT

In the epididymis, epithelial cells work in a concerted manner to create a luminal environment for sperm maturation, transport, and storage. However, the cell functions may be affected by anthropogenic factors, causing negative impacts on male fertility. In our study, we describe the pattern of protein expression in the epithelium and luminal fluid from epididymis of Oligoryzomys nigripes, a South American sigmodontine rodent whose reproductive biology has been little studied. Nine animals were captured from a preserved area of Atlantic Forest, where the exposure to anthropogenic influences is minimal. Epididymides were processed for histological analysis under light and epifluorescence microscopy, in which we used cell-specific markers aquaporin 9 (AQP9), vacuolar H+-ATPase (V-ATPase), and cytokeratin 5 (KRT5). Other samples were assessed for protein expression using shotgun proteomics. Similar to laboratory rodents, principal cells expressed AQP9 in their stereocilia. Basal cells, identified by KRT5 labeling, presented lateral body projections and a few axiopodia going toward the lumen. Clear cells expressed V-ATPase in their sub-apical vesicles and microplicae, and showed different shapes along the duct. Shotgun proteomics detected 51 proteins from epididymal supernatant. Most of them have been previously described in other species, indicating that they are well conserved. Twenty-three proteins detected in O. nigripes have not been described in epididymis from other South American sigmodontine rodents, confirming that the secretion pattern is species-specific. Our findings in O. nigripes from a protected area may help to create a baseline for studies investigating the effects of anthropogenic factors on functionality of the epididymal epithelium.


Subject(s)
Epididymis/metabolism , Proteins/metabolism , Sigmodontinae/metabolism , Animals , Epididymis/anatomy & histology , Epididymis/cytology , Gene Ontology , Imaging, Three-Dimensional , Male , Molecular Sequence Annotation , Proteomics
2.
Anim Reprod Sci ; 176: 20-31, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27908670

ABSTRACT

The rete testis has a close relationship with sperm development and may have other functions besides serving as an intercalated channel. The aim of this study was to identify and characterize the proteins of rete testis fluid (RTF) from tropically-adapted Morada Nova rams. Testicles obtained from six Morada Nova rams were dissected and the head of the epididymis was separated to access the efferent ducts. Rete testis fluid was obtained by gentle massage of the testis. The fluid was centrifuged to remove cell debris and sperm. RTF samples (containing 400µg protein) were separated by 2-D SDS-PAGE and gels, analyzed using PDQuest software (Bio Rad, USA). Proteins were identified using tandem mass spectrometry. Gene ontology and protein network were analyzed using the software tool for searching annotations of proteins (STRAP) and STRING database. Gels had, on average, 227±13.5 spots and 51% of the proteins were found above 40kDa, corresponding to 65% of the intensity of all spots detected. Based on gene ontology analysis, the most common biological processes associated with RTF proteins were regulation (24.3%) and cellular process (23.3%). Binding (27.3%) and catalytic activity (19.3%) corresponded to the most frequent molecular functions. Albumin, clusterin, serotransferrin, immunoglobulin gamma-1 chain and alpha-2-HS-glycoprotein were the most abundant proteins in the ram rete testis fluid. In conclusion, proteins identified in the ram rete testis fluid are linked to several physiological processes associated with sperm protection and spermatogenesis.


Subject(s)
Adaptation, Physiological/physiology , Body Fluids/physiology , Proteome/physiology , Rete Testis/metabolism , Sheep/physiology , Animals , Gene Expression Regulation/physiology , Male , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...