Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142723

ABSTRACT

Previous works have described the activity of Bifidobacterium longum subsp. infantis CECT 7210 (also commercially named B. infantis IM-1®) against rotavirus in mice and intestinal pathogens in piglets, as well as its diarrhea-reducing effect on healthy term infants. In the present work, we focused on the intestinal immunomodulatory effects of B. infantis IM-1® and for this purpose we used the epithelial cell line isolated from colorectal adenocarcinoma Caco-2 and a co-culture system of human dendritic cells (DCs) from peripheral blood together with Caco-2 cells. Single Caco-2 cultures and Caco-2: DC co-cultures were incubated with B. infantis IM-1® or its supernatant either in the presence or absence of Escherichia coli CECT 515. The B. infantis IM-1® supernatant exerted a protective effect against the cytotoxicity caused by Escherichia coli CECT 515 on single cultures of Caco-2 cells as viability reached the values of untreated cells. B. infantis IM-1® and its supernatant also decreased the secretion of pro-inflammatory cytokines by Caco-2 cells and the co-cultures incubated in the presence of E. coli CECT 515, with the response being more modest in the latter, which suggests that DCs modulate the activity of Caco-2 cells. Overall, the results obtained point to the immunomodulatory activity of this probiotic strain, which might underlie its previously reported beneficial effects.


Subject(s)
Escherichia coli Infections , Probiotics , Animals , Bifidobacterium/physiology , Bifidobacterium longum subspecies infantis/metabolism , Caco-2 Cells , Cytokines/metabolism , Escherichia coli/metabolism , Humans , Infant , Mice , Probiotics/pharmacology , Swine
2.
Cell Death Differ ; 24(1): 26-37, 2017 01.
Article in English | MEDLINE | ID: mdl-27518435

ABSTRACT

Proper regulation of cell death signaling is crucial for the maintenance of homeostasis and prevention of disease. A caspase-independent regulated form of cell death called necroptosis is rapidly emerging as an important mediator of a number of human pathologies including inflammatory bowel disease and ischemia-reperfusion organ injury. Activation of necroptotic signaling through TNF signaling or organ injury leads to the activation of kinases receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) and culminates in inflammatory cell death. We found that, in addition to phosphorylation, necroptotic cell death is regulated by ubiquitination of RIP1 in the necrosome. Necroptotic RIP1 ubiquitination requires RIP1 kinase activity, but not necroptotic mediators RIP3 and MLKL (mixed lineage kinase-like). Using immunoaffinity enrichment and mass spectrometry, we profiled numerous ubiquitination events on RIP1 that are triggered during necroptotic signaling. Mutation of a necroptosis-related ubiquitination site on RIP1 reduced necroptotic cell death and RIP1 ubiquitination and phosphorylation, and disrupted the assembly of RIP1 and RIP3 in the necrosome, suggesting that necroptotic RIP1 ubiquitination is important for maintaining RIP1 kinase activity in the necrosome complex. We also observed RIP1 ubiquitination in injured kidneys consistent with a physiological role of RIP1 ubiquitination in ischemia-reperfusion disease. Taken together, these data reveal that coordinated and interdependent RIP1 phosphorylation and ubiquitination within the necroptotic complex regulate necroptotic signaling and cell death.


Subject(s)
Apoptosis , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Cell Line , Creatinine/blood , HEK293 Cells , HT29 Cells , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Mice , Nuclear Pore Complex Proteins/deficiency , Nuclear Pore Complex Proteins/genetics , Oligopeptides/pharmacology , Phosphorylation/drug effects , Protein Kinases/metabolism , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
3.
Semin Cell Dev Biol ; 39: 56-62, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25683283

ABSTRACT

Regulated cell death is a physiological process that controls organismal homeostasis. Deregulation of cell death can lead to the development of a number of human diseases and tissue damage. Apoptosis is a best-known model of caspase-dependent regulated cell death, but recently necroptosis has garnered a lot of attention as a form of regulated cell death not mediated by caspases. Different stimuli can trigger necroptosis, and all of them converge at the activation of the protein kinase RIP3 (receptor-interacting protein 3) and the pseudokinase MLKL (mixed lineage kinase domain-like). Necroptosis activation relies on the unique protein-interaction motif RHIM (RIP homology interaction motif). Different RHIM-containing proteins (RIP1, DAI and TRIF) transduce necroptotic signals from the cell death trigger to the cell death mediators RIP3-MLKL. RIP1 has a particularly important and complex role in necroptotic cell death regulation ranging from cell death activation to inhibition, often in a cell type and context dependent fashion.


Subject(s)
Cell Death , Animals , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
4.
Science ; 343(6177): 1357-60, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24557836

ABSTRACT

Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 trigger pro-inflammatory cell death termed "necroptosis." Studies with RIPK3-deficient mice or the RIPK1 inhibitor necrostatin-1 suggest that necroptosis exacerbates pathology in many disease models. We engineered mice expressing catalytically inactive RIPK3 D161N or RIPK1 D138N to determine the need for the active kinase in the whole animal. Unexpectedly, RIPK3 D161N promoted lethal RIPK1- and caspase-8-dependent apoptosis. In contrast, mice expressing RIPK1 D138N were viable and, like RIPK3-deficient mice, resistant to tumor necrosis factor (TNF)-induced hypothermia. Cells expressing RIPK1 D138N were resistant to TNF-induced necroptosis, whereas TNF-induced signaling pathways promoting gene transcription were unperturbed. Our data indicate that the kinase activity of RIPK3 is essential for necroptosis but also governs whether a cell activates caspase-8 and dies by apoptosis.


Subject(s)
Apoptosis , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 8/genetics , Caspase 8/metabolism , Cell Survival , Embryo Loss , Embryonic Development , Enteritis/pathology , Fas-Associated Death Domain Protein/metabolism , Gene Knock-In Techniques , Intestine, Large/pathology , Intestine, Small/pathology , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/pharmacology
5.
Hum Gene Ther ; 22(4): 451-63, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20942657

ABSTRACT

Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.


Subject(s)
Breast Neoplasms/metabolism , DNA/genetics , DNA/metabolism , Inverted Repeat Sequences/genetics , Breast Neoplasms/genetics , Cell Death/genetics , Cell Line, Tumor , DNA/pharmacology , DNA/toxicity , DNA, Single-Stranded/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Enzyme Activation/drug effects , Female , Humans , Methotrexate/pharmacology , Nuclear Proteins/metabolism , Protein Binding/drug effects , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Splicing Factor U2AF , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
6.
Biochem Pharmacol ; 81(1): 60-70, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20854796

ABSTRACT

Methotrexate is a chemotherapeutic agent used in breast cancer treatment, but the occurrence of resistance limits its therapeutic use. A microarrays analysis between sensitive and methotrexate resistant MCF7 and MDA-MB-468 breast cancer cells pointed out the UDP-glucuronosyltransferase 1A (UGT1A) family as a common deregulated node in both cell lines. This family of genes is involved in Phase II metabolism. UGT1A6 was the main isoform responsible for UGT1A family overexpression in these cells. Its overexpression was not due to gene amplification. Transfection of a vector encoding for UGT1A6 in sensitive cells counteracted the cytotoxicity caused by methotrexate. Methotrexate increased the transcriptional activity from a luciferase reporter driven by the UGT1A6 promoter and induced UGT1A6 mRNA and enzymatic activity. Promoter analysis suggested that UGT1A6 induction by methotrexate could be driven by the transcription factors ARNT (HIF-1) and AhR/ARNT. Cells incubated with anticancer drugs susceptible to glucuronidation, such as tamoxifen or irinotecan, together with methotrexate, showed a lesser degree of cytotoxicity, due to UGT1A6 induction. The pharmacological effect of this induction should be taken into account when combining methotrexate with other drugs that are glucuronidated.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Glucuronosyltransferase/metabolism , Methotrexate/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Glucuronosyltransferase/genetics , Humans , Methotrexate/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tamoxifen/administration & dosage , Tamoxifen/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
7.
BMC Cancer ; 10: 250, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20515499

ABSTRACT

BACKGROUND: Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance. METHODS: The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for beta-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway. RESULTS: S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. beta-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells. CONCLUSIONS: S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistance.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm , Methotrexate/pharmacology , S100 Proteins/metabolism , Blotting, Western , Caco-2 Cells , Cell Survival/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Messenger/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , S100 Calcium-Binding Protein A4 , S100 Proteins/genetics , Transcription, Genetic , Transfection , Up-Regulation , beta Catenin/genetics , beta Catenin/metabolism
8.
Genome Med ; 1(9): 83, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19732436

ABSTRACT

BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.

9.
J Biol Chem ; 284(17): 11579-89, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19261618

ABSTRACT

We analyzed whether polypurine hairpins (PPRHs) had the ability to knock down gene expression. These hairpins are formed by two antiparallel purine domains linked by a loop that allows the formation of Hoogsteen bonds between both domains and Watson-Crick bonds with the target polypyrimidine sequence, forming triplex structures. To set up the experimental conditions, the human dhfr gene was used as a model. The PPRHs were designed toward the template strand of DNA. The transfection of the human breast cancer cell line SKBR3 with these template hairpins against the dhfr gene produced higher than 90% of cell mortality. Template PPRHs produced a decrease in DHFR mRNA, protein, and its corresponding enzymatic activity. In addition, the activity of DHFR PPRHs was tested against breast cancer cells resistant to methotrexate, observing high cell mortality. Given the difficulty in finding long polypyrimidine stretches, we studied how to compensate for the presence of purine interruptions in the polypyrimidine target sequence. The stability of PPRH was measured, resulting in a surprisingly long half-life of about 5 days. Finally, to test the generality of usage, template PPRHs were employed against two important genes involved in cell proliferation, telomerase and survivin, producing 80 and 95% of cell death, respectively. Taken together our results show the ability of antiparallel purine hairpins to bind the template strand of double strand DNA and to decrease gene transcription. Thus, PPRHs can be considered as a new type of molecules to modulate gene expression.


Subject(s)
DNA/chemistry , Gene Expression Regulation , Genetic Techniques , Purines/chemistry , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Humans , Inhibitor of Apoptosis Proteins , Microtubule-Associated Proteins/metabolism , Models, Biological , Molecular Sequence Data , RNA, Messenger/metabolism , Survivin , Telomerase/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...