Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Rev Camb Philos Soc ; 98(2): 662-676, 2023 04.
Article in English | MEDLINE | ID: mdl-36453621

ABSTRACT

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.


Subject(s)
Ecosystem , Forests , Humans , Trees , Tropical Climate , Biodiversity
2.
Glob Chang Biol ; 27(1): 177-189, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33118242

ABSTRACT

Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.


Subject(s)
Ecosystem , Trees , Biodiversity , Brazil , Forests , Tropical Climate
3.
Sci Adv ; 4(8): eaat1192, 2018 08.
Article in English | MEDLINE | ID: mdl-30116781

ABSTRACT

Declining deforestation rates in the Brazilian Amazon are touted as a conservation success, but illegal logging is a problem of similar scale. Recent regulatory efforts have improved detection of some forms of illegal logging but are vulnerable to more subtle methods that mask the origin of illegal timber. We analyzed discrepancies between estimated timber volumes of the national forest inventory of Brazil and volumes of logging permits as an indicator of potential fraud in the timber industry in the eastern Amazon. We found a strong overestimation bias of high-value timber species volumes in logging permits. Field assessments confirmed fraud for the most valuable species and complementary strategies to generate a "surplus" of licensed timber that can be used to legalize the timber coming from illegal logging. We advocate for changes to the logging control system to prevent overexploitation of Amazonian timber species and the widespread forest degradation associated with illegal logging.

4.
Ecol Appl ; 28(2): 373-384, 2018 03.
Article in English | MEDLINE | ID: mdl-29171902

ABSTRACT

Mixed tree plantings and natural regeneration are the main restoration approaches for recovering tropical forests worldwide. Despite substantial differences in implementation costs between these methods, little is known regarding how they differ in terms of ecological outcomes, which is key information for guiding decision making and cost-effective restoration planning. Here, we compared the early ecological outcomes of natural regeneration and tree plantations for restoring the Brazilian Atlantic Forest in agricultural landscapes. We assessed and compared vegetation structure and composition in young (7-20 yr old) mixed tree plantings (PL), second-growth tropical forests established on former pastures (SGp), on former Eucalyptus spp. plantations (SGe), and in old-growth reference forests (Ref). We sampled trees with diameter at breast height (DBH) 1-5 cm (saplings) and trees at DBH > 5 cm (trees) in a total of 32 20 × 45 m plots established in these landscapes. Overall, the ecological outcomes of natural regeneration and restoration plantations were markedly different. SGe forests showed higher abundance of large (DBH > 20 cm) nonnative species, of which 98% were resprouting Eucalyptus trees, than SGp and PL, and higher total aboveground biomass; however, aboveground biomass of native species was higher in PL than in SGe. PL forests had lower abundance of native saplings and lianas than both naturally established second-growth forests, and lower proportion of animal dispersed saplings than SGe, probably due to higher isolation from native forest remnants. Rarefied species richness of trees was lower in SGp, intermediate in SGe and Ref and higher in PL, whereas rarefied species richness of saplings was higher in SG than in Ref. Species composition differed considerably among regeneration types. Although these forests are inevitably bound to specific landscape contexts and may present varying outcomes as they develop through longer time frames, the ecological particularities of forests established through different restoration approaches indicate that naturally established forests may not show similar outcomes to mixed tree plantings. The results of this study underscore the importance that restoration decisions need to be based on more robust expectations of outcomes that allow for a better analysis of the cost-effectiveness of different restoration approaches before scaling-up forest restoration in the tropics.


Subject(s)
Environmental Restoration and Remediation , Forests , Agriculture , Biodiversity , Brazil , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...