Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Ecotoxicology ; 32(4): 502-511, 2023 May.
Article in English | MEDLINE | ID: mdl-37118609

ABSTRACT

Small wild mammals have been used to measure the damage caused by exposure to oil-contaminated soil, including deer mice. However, the study of toxic effects of crude oil using oxidative damage biomarkers in the wild rodent Calomys laucha (Vesper mouse) is absent. This investigation aimed to evaluate the effects of acute exposure to contaminated soil with different concentrations of crude oil (0, 1, 2, 4 and 8% w/w), simulating an accidental spill, using oxidative stress biomarkers in the liver, kidneys, lungs, testes, paw muscle, and lymphocytes of C. laucha. Animals exposed to the contaminated soil showed increases in lipid peroxidation and protein carbonylation at the highest exposure concentrations in most organ homogenates analyzed and also in blood cells, but responses to total antioxidant capacity were tissue-dependent. These results showed that acute exposure to oil-contaminated soil caused oxidative damage in C. laucha and indicate these small mammals may be susceptible to suffer the impacts of such contamination in its occurrence region, threatening the species' survival.


Subject(s)
Petroleum Pollution , Petroleum , Animals , Petroleum Pollution/adverse effects , Oxidative Stress , Biomarkers , Petroleum/toxicity , Soil , Mammals
3.
Environ Sci Pollut Res Int ; 28(2): 2236-2244, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32880044

ABSTRACT

A mysterious oil spill occurred in the ocean near Brazil in 2019, which affected coastal areas in northeastern Brazil. When oil pollution occurs in coastal zones, organisms such as small mammals can suffer deleterious effects to their health. This study aimed to evaluate the effects of exposure to contaminated sandy soil with different crude oil concentrations in males of the species Calomys laucha. The exposure to crude oil resulted in multiple health issues for the subjects in the very first days of exposure. Furthermore, the exposure resulted in mutagenic damage to bone marrow blood cells and behavioral and morphological alterations, which were almost always in a dose-dependent form. The present study demonstrates the sensibility of the biomarkers used and highlights that small wild mammals such as C. laucha are useful for predicting environmental damage caused by the exposure to crude oil.


Subject(s)
Petroleum Pollution , Petroleum , Animals , Brazil , Male , Petroleum/toxicity , Rodentia
4.
Environ Sci Pollut Res Int ; 24(20): 16806-16814, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28567685

ABSTRACT

The present study assessed the DNA damage in environmentally exposed volunteers living in seven municipalities in an industrial coal region, through the use of the comet assay with blood cells and the micronucleus test with buccal cells. Blood and buccal smears were collected from 320 male volunteers living in seven cities inserted in a coal region. They were ages of 18 and 50 years and also completed a questionnaire intended to identify factors associated with DNA damage through a Poisson regression analysis. The comet assay detected significant differences in DNA damage in volunteers from different municipalities, and neighboring cities (Pedras Altas, Aceguá, and Hulha Negra) had a higher level of DNA damage in relation to control city. Some of the risk factors associated with identified DNA lesions included residence time and life habits. On the other hand, the micronucleus test did not identify differences between the cities studied, but the regression analysis identified risk factors such as age and life habits (consumption of mate tea and low carbohydrates diet). We conclude that there are differences in the DNA damage of volunteers from different cities of the carboniferous region, but the presence of micronuclei in the oral mucosa does not differ between the same cities. Furthermore, we alert that some related factors may increase the risk of genotoxicity, such as residence location and time, and living and food habits. Finally, we suggest the need for continuous biomonitoring of the population, as well as for investing in health promotion in these vulnerable populations.


Subject(s)
Coal/toxicity , DNA Damage , Mouth Mucosa/drug effects , Adolescent , Adult , Comet Assay , Cross-Sectional Studies , Humans , Male , Micronucleus Tests , Middle Aged , Minerals , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...