Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 43(7): 983-990, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32811371

ABSTRACT

The present work aimed to give an economical destiny to the produced water, a residue generated by the oil and gas industry by means of producing bioactives such as xanthan gum and ramnolipid. These compounds are often used in combination during enhanced oil recovery strategies. On the other hand, reports on co-culture of bacterial strains that are responsible for their production are rare. This research shows a factorial design method associated with surface response analysis to optimize carbon sources, sucrose and crude glycerin, and fermentation agents for culturing Xanthomonas campestris and Pseudomonas aeruginosa using the described conditions. After the critical point validation resulting in xanthan and ramnolipid production of 8.69 and 4.80 g L-1, quality tests showed an apparent viscosity of 1006 cP with an emulsifying activity abouve 50% for 94 h.


Subject(s)
Industrial Oils , Xanthomonas campestris , Polysaccharides, Bacterial/chemistry , Water
2.
J Mol Model ; 27(6): 189, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34046767

ABSTRACT

Sulphate-reducing bacteria are commonly associated with biological causes of oil well souring. Biosulphetogenesis can directly affect oil quality and storage due to the accumulation of sulphides. In addition, these microorganisms can create bio-incrustation that can clog pipes. Sulphite reductase (SIR) is the enzyme responsible for converting ion sulphite into sulphide and several substances may interfere or control such activity. This interference can hinder growth of the sulphate-reducing bacteria and, consequently, it reduces sulphide accumulation in situ. This work focuses on molecular modelling techniques along with in vitro experiments in order to investigate the potential of two essential oils and one vegetable oil as main inhibitors of sulphite reductase activity. Docking simulation identified several substances present in Rosmarinus officinalis, Tea tree and Neem extractable oils as potential inhibitors of SIR. Substances present in Neem vegetable oil are the most potent inhibitors, followed by Rosmarinus officinalis and Tea tree essential oils. The Neem oil mixture showed a superior effectiveness in intracellular SIR inhibitory effects.


Subject(s)
Bacteria/drug effects , Bacteria/enzymology , Molecular Docking Simulation , Oils, Volatile/pharmacology , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Sulfates/metabolism , Tea Tree Oil/pharmacology , Bacteria/metabolism , Rosmarinus/chemistry
3.
J Photochem Photobiol B ; 200: 111654, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31671373

ABSTRACT

The Enterococcus faecalis is a microorganism that causes multiple forms of resistance to a wide range of drugs used clinically. aPDT is a technique in which a visible light activates photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. aPDT is an alternative to antibiotics with the advantage of not causing resistance. The search for an alternative treatment of infections caused by E. faecalis, without using antibiotics, is off great clinical importance. The aim of present investigation was to assess the efficacy of using 3.32 ηg/mL of 1,9-dimethylmethylene blue (DMMB) as photosensitizer associated with the use of either Laser (λ660 nm) or LED (λ632 ±â€¯2 nm) using different energy densities (6, 12 and 18 J/cm2) to kill E. faecalis in vitro. Under different experimental conditions, 14 study groups, in triplicate, were used to compare the efficacy of the aPDT carried out with either the laser or LED lights using different energy densities associated to DMMB. The most probable number method (MPN) was used for quantitative analysis. Photodynamic antimicrobial effectiveness was directly proportional to the energy density used, reaching at 18 J/cm2, 99.999998% reduction of the counts of E. faecalis using both light sources. The results of this study showed that the use of 3.32 ηg/mL of DMMB associated with the use 18 J/cm2 of LED light (λ632 ±â€¯2 nm) reduced >7-log counts of planktonic culture of E. faecalis.


Subject(s)
Enterococcus faecalis/drug effects , Light , Methylene Blue/analogs & derivatives , Photosensitizing Agents/pharmacology , Animals , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/veterinary , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Methylene Blue/chemistry , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Mice , Mice, Inbred BALB C , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use
4.
J Photochem Photobiol B ; 200: 111646, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31655457

ABSTRACT

Antimicrobial Photodynamic Therapy (aPDT) is an alternative to conventional treatments of local infections such as the use of antibiotics, which may lead to the development of resistance. aPDT besides requiring the use of a photosensitiser also needs a light source do be carried out. In the search for efficient and low-cost procedure the use of multispectral polarized light (λ400-2000 nm) emerges as a possibility for the execution of aPDT. The use of a highly effective photosensitizer is also of great importance. 1,9-Dimethyl-Methylene Blue Zinc Chloride Double Salt - DMMB is a potent phenothiazine derivative that presents high photodynamic action due to its high lipophilicity as well as a greater quantum yield of Singlet oxygen and phototoxicity when compared to other Photosensitizers. The aim of this study was to assess, In Vitro, the efficacy of aPDT on Staphylococcus aureus (ATCC 25923) using different concentrations of DMMB associated to a Polarized light source (Bioptron®, 40 mW, ᴓ = 15.8 cm2) using different energy densities. Based on the IC50, 150 and 300 ng/mL of DMMB concentrations were chosen for this study. Twelve experimental groups were used: (Control, PLs, PSs and aPDTs). Serial dilutions (up to 10-8) of the bacterial inoculum were used and the DMMB was added using the two previously determined concentrations. After 5 min of preincubation the dilutions of the inoculum were illuminated by the polarized light source. Subsequently, 100 µL of each dilution, in triplicate, were inoculated into Petri dishes containing TSA medium and incubated in a bacteriological oven at 37 °C for 24-h and quantification of UFCs was done. The results showed significant exponential reduction (p < .0001) of 99.93% (150 ng/mL + LP 10 J/cm2) and 99.97% (300 ng/mL + LP 5 J/cm2) the CFU counts in comparison to non-illuminated control. The results of this study allow to conclude that aPDT carried out with 1,9-Dimethyl-Methylene Blue Zinc Chloride Double Salt-DMMB and a PL souce was efficacious on the reduction (99.97%), in vitro, of the bacterial counts of S. aureus.


Subject(s)
Anti-Infective Agents/pharmacology , Chlorides/chemistry , Methylene Blue/analogs & derivatives , Photosensitizing Agents/chemistry , Staphylococcus aureus/drug effects , Zinc Compounds/chemistry , Anti-Infective Agents/chemistry , Light , Methylene Blue/chemistry , Photochemotherapy , Photosensitizing Agents/pharmacology
5.
J Photochem Photobiol B ; 191: 38-43, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30562720

ABSTRACT

Light biotechnology is a promising tool for enhancing recalcitrant compounds biodegradation. Xenobiotics can cause a significant impact on the quality of the results achieved by sewage treatment systems due to their recalcitrance and toxicity. The optimization of bioremediation and industrial processes, aiming to increase efficiency and income is of great value. The aim of this study was to accelerate and optimize the hydrolysis of Remazol Brilliant Blue R by photo stimulating a thermophilic bacterial consortium. Three experimental groups were studied: control group; LED Group and Laser Group. The control group was exposed to the same conditions as the irradiated groups, except exposure to light. The samples were irradiated in Petri dishes with either a Laser device (λ660 nm, CW, θ = 0.04 cm2, 40 mW, 325 s, 13 J/cm2) or by a LED prototype (λ632 ±â€¯2 nm, CW, θ = 0.5 cm2, 145 mW, 44 s, 13 J/cm2). We found that, within 48-h, statistically significant differences were observed between the irradiated and the control groups in the production of RNA, proteins, as well as in the degradation of the RBBR. It is concluded that, both Laser and LED light irradiation caused increased cellular proliferation, protein production and metabolic activity, anticipating and increasing the catabolism of the RBBR. Being the economic viability a predominant aspect for industrial propose our results indicates that photo stimulation is a low-cost booster of bioprocesses.


Subject(s)
Anthraquinones/chemistry , Photochemical Processes , Xenobiotics/metabolism , Anthraquinones/metabolism , Anthraquinones/radiation effects , Biodegradation, Environmental , Costs and Cost Analysis , Hydrolysis , Lasers , Light , Microbial Consortia/radiation effects , Xenobiotics/radiation effects
6.
J Photochem Photobiol B ; 181: 115-121, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29549804

ABSTRACT

Cellulose has a highly diversified architecture and its enzymatic complexes are studied for achieving an efficient conversion and a high level of efficiency in the deconstruction of cellulolytic biomass into sugars. The aim of this investigation was to evaluate the effect of Laser or LED light in the cellulolytic activity (CMCase) and on the proliferation of the thermophilic microbial consortium used on the degradation process of a lignocellulosic biomass of green coconut shell. The irradiation protocol consisted of six Laser irradiations (λ660 ηm, 40 mW, 270 s, 13 J/cm2) or LED (λ632 ±â€¯2 ηm, 145 mW, 44 s, 13 J/cm2) with 12- h time intervals in nutrient deprivation conditions. After irradiation, the consortium was inoculated into a lignocellulosic biomass (coconut fibers). Non- irradiated consortium was also inoculated and acted as control. Cell proliferation and endoglucanase activity were quantified during the experimental time. Experiments were carried out in triplicate. The results showed an increase of 250 % of thermo-cellulolytic microorganisms for the LED group and 200% for the Laser group when compared to the control. The enzymatic index (red Congo method), showed a statistically significant difference in the process of degradation of the lignocellulosic biomass between the Laser and LED groups compared to the control group [p < 0.0029; p < 0.029, respectively] 48-hs after the inoculation of the microorganisms. At the end of 72-h, this significant difference was maintained for both irradiated groups (p < 0.0212). Based upon the protocol used on the present study, it is possible to concluded that LED light enhanced cell proliferation of the thermophilic microbial consortium while the Laser light increase the enzymatic index of the lignocellulosic biomass of green coconut shell.


Subject(s)
Lasers , Light , Microbial Consortia/physiology , Bacterial Proteins/metabolism , Biomass , Cellulase/metabolism , Cellulose/chemistry , Cellulose/metabolism , Cocos/metabolism , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Hydrolysis/radiation effects , Microscopy, Fluorescence
7.
J Biomol Struct Dyn ; 33(6): 1176-84, 2015.
Article in English | MEDLINE | ID: mdl-24956239

ABSTRACT

We have used docking techniques in order to propose potential inhibitors to the enzymes adenosine phosphosulfate reductase and adenosine triphosphate sulfurylase that are responsible, among other deleterious effects, for causing souring of oil and gas reservoirs. Three candidates selected through molecular docking revealed new and improved polar and hydrophobic interactions with the above-mentioned enzymes. Microbiological laboratory assays performed subsequently corroborated the results of computer modelling that the three compounds can efficiently control the biogenic sulfide production.


Subject(s)
Ligands , Molecular Docking Simulation , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Protein Binding , Sulfate Adenylyltransferase/antagonists & inhibitors , Sulfate Adenylyltransferase/chemistry
8.
Lasers Med Sci ; 29(2): 789-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23979801

ABSTRACT

Osteomyelitis is an acute or chronic inflammation in the marrow spaces in the superficial or cortical bone, and can be associated with bacterial or fungal infections. Chronic osteomyelitis represents a major health problem due to its difficult treatment and increased morbidity. Photodynamic antimicrobial therapy (PAmT) is a treatment based on a cytotoxic photochemical reaction in which a bright light produced by a laser system and an active photosensitizer absorbed by cells leads to a process of activation that induces a series of metabolic reactions that culminates a bacterial killing. The aim of the present randomized study was to evaluate, by in vitro and in vivo microbiological analysis, the effects of PAmT on tibial surgical bone defects in rats infected by Staphylococcus aureus using bacterial counts carried out immediately and after 30 days after treatment as outcome measure. In the preliminary in vitro study, a diode laser (λ660 nm; 40 mW; ϕ = 0.4 cm(2); 5 or 10 J/cm(2)) and 5, 10, and 15 µg/mL toluidine blue were tested, and the best parameter was chosen for the in vivo study. The concentration of 5 µg/mL was selected to perform the decontamination of S. aureus-infected tibial bone defects in rats. The findings were subjected to statistical analysis. For all PAmTs groups, with the different concentrations, treatment showed significant reductions (p < 0.001) in the amount of bacteria. The in vivo study PAmT group presented a bacterial reduction of 97.4% (p < 0.001). The PAmT using toluidine blue was effective in reducing the number of S. aureus in both in vitro and in vivo studies.


Subject(s)
Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Photochemotherapy/methods , Staphylococcus aureus/pathogenicity , Animals , Anti-Infective Agents/therapeutic use , Chronic Disease , Male , Rats, Wistar , Staphylococcus aureus/drug effects , Treatment Outcome
9.
Appl Biochem Biotechnol ; 171(8): 1933-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24013860

ABSTRACT

Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m(3)CH4 kgCODvinasse (-1). The highest productivity of Chlorella vulgaris biomass (70 mg l(-1) day(-1)) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l(-1) day(-1). Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.


Subject(s)
Biofuels , Chlorella vulgaris/growth & development , Ethanol/metabolism , Saccharum/metabolism , Anaerobiosis , Biodegradation, Environmental , Chlorella vulgaris/metabolism , Humans , Lipids/biosynthesis , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...