Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Insect Biochem Physiol ; 113(4): e22025, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37199037

ABSTRACT

Proteases such as trypsins in the gut of Spodoptera frugiperda are responsible for breaking down dietary proteins into amino acids necessary for insect growth and development. In this study, we characterized the insecticidal potential of dioscorin, the storage protein of yam (Dioscorea alata), using molecular docking and molecular dynamics simulations to determine the interactions between trypsin enzymes and the protein inhibitor dioscorin. To achieve this, we used the three-dimensional structures of the trypsin-like digestive enzymes of S. frugiperda, a pest of corn and cotton, as receptors or target molecules. We performed protein-protein docking using Cluspro software, estimation of the binding free energy, and information on the dynamic and time-dependent behavior of dioscorin-trypsin complexes using the NAMD package. Our computational analysis showed that dioscorin can bind to the digestive trypsins of S. frugiperda, as confirmed by the affinity energy values (-1022.4 to -1236.9), stability of the complexes during the simulation trajectory, and binding free energy values between -57.3 and -66.9 kcal/mol. Additionally, dioscorin uses two reactive sites to bind trypsin, but the largest contribution to the interaction energy is made by amino acid residues between amino acid backbone positions 8-14 by hydrogen bonds, hydrophobic, and Van der Waals (VdW) interactions. VdW is the energy that makes the greatest contribution to the binding energy. Collectively, our findings demonstrate, for the first time, the binding capacity of the yam protein dioscorin to the digestive trypsin of S. frugiperda. These promising results suggest a possible bioinsecticide action of dioscorin.


Subject(s)
Dioscorea , Animals , Dioscorea/chemistry , Dioscorea/metabolism , Plant Proteins/metabolism , Molecular Docking Simulation , Trypsin/metabolism , Amino Acids/metabolism , Molecular Dynamics Simulation
2.
Physiol Mol Biol Plants ; 29(4): 559-577, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37187776

ABSTRACT

Climate change increases precipitation variability, particularly in savanna environments. We have used integrative strategies to understand the molecular mechanisms of drought tolerance, which will be crucial for developing improved genotypes. The current study compares the molecular and physiological parameters between the drought-tolerant Embrapa 48 and the sensitive BR16 genotypes. We integrated the root-shoot system's transcriptome, proteome, and metabolome to understand drought tolerance. The results indicated that Embrapa 48 had a greater capacity for water absorption due to alterations in length and volume. Drought tolerance appears to be ABA-independent, and IAA levels in the leaves partially explain the higher root growth. Proteomic profiles revealed up-regulated proteins involved in glutamine biosynthesis and proteolysis, suggesting osmoprotection and explaining the larger root volume. Dysregulated proteins in the roots belong to the phenylpropanoid pathways. Additionally, PR-like proteins involved in the biosynthesis of phenolics may act to prevent oxidative stress and as a substrate for modifying cell walls. Thus, we concluded that alterations in the root-shoot conductive vessel system are critical in promoting drought tolerance. Moreover, photosynthetic parameters from reciprocal grafting experiments indicated that the root system is more essential than the shoots in the drought tolerance mechanism. Finally, we provided a comprehensive overview of the genetic, molecular, and physiological traits involved in drought tolerance mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01307-7.

3.
Pestic Biochem Physiol ; 187: 105188, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127063

ABSTRACT

Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals - Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor - Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.


Subject(s)
Biological Control Agents , Glycine max , Moths , Pesticides , Animals , Aprotinin/pharmacology , Biological Control Agents/pharmacology , Cattle , Hydrogen/pharmacology , Larva , Peptide Hydrolases/metabolism , Pesticides/pharmacology , Protease Inhibitors/pharmacology , Trypsin , Trypsin Inhibitors/pharmacology
4.
Pestic Biochem Physiol ; 184: 105107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715046

ABSTRACT

The design and production of molecules capable of mimicking the binding or/and functional sites of proteins inhibitors represent a promising strategy for the exploration and modulation of gut trypsin function in insect pests, specifically Lepidoptera. Here, for the first time, we characterized the trypsin activity present in the gut, performance and development of Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae when exposed to arginine-containing dipeptides. In silico assessment showed that arginine-containing dipeptides have a greater affinity for the active site of A. gemmatalis trypsins than lysine-containing peptides due to the presence of the double-charged guanidinium group that enhances the interaction at the S1 subsite of trypsins. Furthermore, the inhibitory and anti-insect potential of the peptides was demonstrated through kinetic and larval life cycle parameters, respectively. These dipeptides showed structural stability, binding to the active site, corroborated in vitro (competitive inhibition), and significant reduction of trypsin enzyme activity in the gut, survival, and weight of the A. gemmatalis larvae. Our findings reinforce the idea that small peptides are promising candidates for lepidopteran pest management. The optimization of DI2 and DI1 peptides, enhancing uptake and affinity to trypsins, may turn the use of these molecules feasible in agriculture.


Subject(s)
Fabaceae , Moths , Animals , Arginine/pharmacology , Dipeptides/pharmacology , Insecta , Larva/metabolism , Moths/metabolism , Glycine max/metabolism , Trypsin
5.
Protein Pept Lett ; 24(11): 1040-1047, 2017.
Article in English | MEDLINE | ID: mdl-28925864

ABSTRACT

BACKGROUND: Enzyme kinetics contributes to understanding the structure and function of insect digestive serine proteases. Kinetic parameters allow to understanding active sites and mechanisms of enzymes efficacy, identifying the inhibition of the insects digestive protease system by inhibitors produced by plants, or via the application of synthetic inhibitors Objectives: The aim of this study was to purify digestive serine proteases of A. gemmatalis, determining their kinetic properties using the chromogenic substrates tripeptidyl and characterizing the effects of synthetic inhibitors on their activity. In order to provide new opportunities for sustainable pest management through the development of protease inhibitors. METHODS: The enzymes were purified on p-aminobenzamidine agarose affinity column in an FPLC system using electrophoresis with 12.5% polyacrylamide gel. Michaelis-Menten constants and the inhibition model were determined according to the Dixon methodology and Lineweaver-Burk's double reciprocal. RESULTS: The KM values and catalytic constants of peptide substrates show that A. gemmatalis trypsin- like has a higher affinity for substrates with arginine in the P1 position. Inhibition by Gor 3, Gor 4, and Gor 5, in the presence of L-BApNA, was linear competitive. The inhibition constant for the Gor 5 peptide was higher due to its strong interaction with hydrophobic residues in the secondary site region of A. gemmatalis trypsin-like. CONCLUSION: It is observed that among the three peptides analyzed, the Gor 5 presented lower inhibition constant and therefore, the most potent among the tested ones. The predominance of hydrophobic residues in the region of the secondary site of the enzymes favored the interaction of the peptide. After characterization by three different types of graphs profiles, it is possible to verify that the inhibition model of the trypsin-like enzymes for the tested peptides is of the linear competitive type, in the concentration range of inhibitors and substrates analyzed. However, by the graphing profiles it is observed that the inhibition occurred due to the interaction of the peptides at the secondary site S2' in the hydrophobic cavity of the enzymes analyzed.


Subject(s)
Oligopeptides/chemistry , Serine Proteases/chemistry , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Animals , Arginine/chemistry , Catalytic Domain , Chromatography, Affinity/methods , Hydrophobic and Hydrophilic Interactions , Kinetics , Moths , Protein Binding , Protein Conformation , Thermodynamics , Trypsin/chemistry
6.
Article in English | MEDLINE | ID: mdl-28762531

ABSTRACT

Purification of active trypsin in the digestive process of insects is essential for the development of potent protease inhibitors (PIs) as an emerging pest control technology and research into insect adaptations to dietary PIs. An important aspect is the presence of proteolytic microorganisms, which contribute to host nutrition. Here, we purified trypsins produced by bacteria Bacillus cereus, Enterococcus mundtii, Enterococcus gallinarum, and Staphylococcus xylosus isolated from the midgut of Anticarsia gemmatalis. The trypsins had a molecular mass of approximately 25 kDa. The enzymes showed increased activity at 40°C, and they were active at pH values 7.5-10. Aprotinin, bis-benzamidine, and soybean Kunitz inhibitor (SKTI) significantly inhibited trypsin activity. The l-1-tosyl-amido-2-phenylethylchloromethyl ketone (TPCK), pepstatin A, E-64, ethylenediamine tetraacetic acid, and calcium ions did not affect the enzyme activity at the concentrations tested. We infer the purified trypsins do not require calcium ions, by which they differ from the trypsins of other microorganisms and the soluble and insoluble trypsins characterized from A. gemmatalis. These data suggest the existence of different isoforms of trypsin in the velvetbean caterpillar midguts.


Subject(s)
Bacterial Proteins/isolation & purification , Moths/enzymology , Trypsin/isolation & purification , Animals , Bacterial Proteins/metabolism , Gastrointestinal Tract/microbiology , Kinetics , Moths/microbiology , Trypsin/metabolism , Trypsin Inhibitors
7.
Arch. latinoam. nutr ; 66(1): 5-16, mar. 2016. tab, graf
Article in English | LIVECS, LILACS | ID: biblio-1023133

ABSTRACT

The purpose of this work was to establish predictive equations for the digestibility of proteins of animal and vegetal origin by correlating in vitro and in vivo methods. Proteins sources for animal and vegetable were used. To calculate in vitro digestibility, we used pH values obtained 10 min after a solution of enzymes was added to a protein solution (pH-drop method). We also used the pH-static method, which measures the volume of additional NaOH that is necessary to maintain a pH of 8.0 after the addition of an enzymatic solution. In vivo digestibility was measured in newly weaned male rats that were fed a diet of AIN-93G for growth with a modified protein content of 9.5% for 14 days. The equations developed using the pH-drop method allowed us to predict in vivo digestibility amounts that were more closely correlated with real in vivo digestibility than those obtained with equations using the pH-static method. In vitro techniques are less expensive, require less manpower and physical space, and use a smaller quantity of protein(AU)


O objetivo deste trabalho foi estabelecer equações de predição para a digestibilidade das proteínas de origem animal e vegetal, correlacionando métodos in vitro e in vivo. Foram utilizadas proteínas de origem animal e vegetal. Para o cálculo da digestibilidade in vitro foram utilizados os valores de pH obtidos em 10 min após a adição da solução de enzimas (método de queda de pH). Também foi utilizado o método de pH estático, o qual mede o volume de NaOH adicionado, necessário para manter o pH em 8,0 após a adição de uma solução enzimática. A digestibilidade in vivo foi medida em ratos machos recémdesmamados que foram alimentados com uma dieta AIN- 93G para crescimento com teor de proteína modificada de 9,5% durante 14 dias. As equações desenvolvidas utilizando o método de queda de pH permitiram prever em quantidades digestibilidade in vitro que foram mais estreitamente correlacionadas com a digestibilidade in vivo do que aqueles obtidas utilizando equações do método de pH estático. As técnicas in vitro são menos dispendiosas, exigem menos mão-de-obra e espaço físico, e utiliza uma menor quantidade de proteína(AU)


Subject(s)
Humans , Male , Female , Peptide Hydrolases/isolation & purification , Plant Proteins, Dietary/analysis , In Vitro Techniques , Dietary Proteins/chemical synthesis , Nitrogen Cycle
8.
J Venom Anim Toxins Incl Trop Dis ; 19(1): 14, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23849585

ABSTRACT

Erucism is a skin reaction to envenomation from certain poisonous caterpillar bristles. In Brazil, most reports of erucism provoked by Lonomia caterpillars are from the southern region. Most manifestations of erucism are local and include burning pain, itching, local hyperthermia and, rarely, blisters (benign symptoms with spontaneous regression in a few hours). General symptoms such as nausea and vomiting, headache, fever, myalgia, abdominal pain and conjunctivitis may also occur. Uncommon symptoms include arthritis, coagulation disorders (manifested as bruising and bleeding), intracerebral hemorrhage and acute renal failure, which comprise serious complications. The present study reports the case of 60-year-old patient from Rio de Janeiro state, Brazil, who came into contact with a caterpillar and developed, a few days later, chronic renal disease.

9.
Article in English | LILACS, VETINDEX | ID: biblio-1484530

ABSTRACT

Erucism is a skin reaction to envenomation from certain poisonous caterpillar bristles. In Brazil, most reports of erucism provoked by Lonomia caterpillars are from the southern region. Most manifestations of erucism are local and include burning pain, itching, local hyperthermia and, rarely, blisters (benign symptoms with spontaneous regression in a few hours). General symptoms such as nausea and vomiting, headache, fever, myalgia, abdominal pain and conjunctivitis may also occur. Uncommon symptoms include arthritis, coagulation disorders (manifested as bruising and bleeding), intracerebral hemorrhage and acute renal failure, which comprise serious complications. The present study reports the case of 60-year-old patient from Rio de Janeiro state, Brazil, who came into contact with a caterpillar and developed, a few days later, chronic renal disease.


Subject(s)
Animals , Renal Insufficiency/pathology , Larva/classification , Lepidoptera
10.
Infectio ; 16(1): 45-58, ene.-mar. 2012. ilus, tab
Article in English | LILACS, COLNAL | ID: lil-649992

ABSTRACT

Chagas disease, an illness caused by the protozoan Trypanosoma cruzi, is clinically and epidemiologically important in Latin America, and particularly in Brazil. This article presents the main biological characteristics of Trypanosoma cruzi, emphasizing ultrastructural, morphological, evolutionary, transcriptomic, and proteomic aspects. With this purpose a literature review was conducted, which allowed for the construction of different sections of the text. The efforts to expand the knowledge of this protist biology may bring positive implications for the understanding of the pathogenesis, control, and above all, treatment of patients affected by this disease.


A moléstia de Chagas, enfermidade causada pelo protozoário Trypanosoma cruzi, apresenta grande relevância clínica e epidemiológica na America Latina, com destaque para o Brasil. Neste artigo serão apresentadas as principais características biológicas do Trypanosoma cruzi, enfatizando-se os aspectos ultra-estruturais, morfológicos, evolutivos, transcriptômicos e proteômicos. Para tanto, foi realizada revisão da literatura, a qual subsidiou a construção de diferentes seções do texto. As investidas para ampliar o conhecimento acerca da biologia do protista poderão trazer implicações positivas para a compreensão da patogênese, do controle e, sobretudo, do tratamento dos pacientes portadores da moléstia.


Subject(s)
Humans , Trypanosoma cruzi , Chagas Disease , Therapeutics , Biological Products , Biology , Review Literature as Topic , Homeopathic Pathogenesy
11.
Plant Foods Hum Nutr ; 61(2): 87-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16786398

ABSTRACT

Common beans have a high nutritional value, but contain galactooligosaccharides (GO), which cause flatulence and intestinal discomfort in humans. The biochemical composition of ten bean cultivars was determined to select those of high protein and low GO contents. The cultivars varied in carbohydrate (47.02-60.17%), GO (3.12-5.71%), protein (22.17-33.50%), lipid (1.13-1.81%), moisture (11.42-12.93%) and ash contents (4.08-5.61%). 'Mexico 222' presented the highest alpha-galactosidase activity. Protein and GO contents were positively correlated. 'Perry Marrow' combined high protein and low GO concentrations, indicating it can be used in improvement programs aiming at high-quality cultivars for human consumption.


Subject(s)
Dietary Proteins/analysis , Oligosaccharides/chemistry , Phaseolus/chemistry , Plant Proteins, Dietary/analysis , Dietary Proteins/standards , Digestion , Flatulence/prevention & control , Food Technology , Nutritive Value , Oligosaccharides/adverse effects , Oligosaccharides/analysis , Plant Proteins, Dietary/standards , Seeds/chemistry , alpha-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...