Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35205282

ABSTRACT

Whereas targeted and shotgun sequencing approaches are both powerful in allowing the study of tissue-associated microbiota, the human: microorganism abundance ratios in tissues of interest will ultimately determine the most suitable sequencing approach. In addition, it is possible that the knowledge of the relative abundance of bacteria and fungi during a treatment course or in pathological conditions can be relevant in many medical conditions. Here, we present a qPCR-targeted approach to determine the absolute and relative amounts of bacteria and fungi and demonstrate their relative DNA abundance in nine different human tissue types for a total of 87 samples. In these tissues, fungi genomes are more abundant in stool and skin samples but have much lower levels in other tissues. Bacteria genomes prevail in stool, skin, oral swabs, saliva, and gastric fluids. These findings were confirmed by shotgun sequencing for stool and gastric fluids. This approach may contribute to a more comprehensive view of the human microbiota in targeted studies for assessing the abundance levels of microorganisms during disease treatment/progression and to indicate the most informative methods for studying microbial composition (shotgun versus targeted sequencing) for various samples types.


Subject(s)
Bacteria , Metagenomics , Bacteria/genetics , DNA, Fungal , Fungi/genetics , Humans , Metagenomics/methods , Sequence Analysis, DNA
2.
Int J Cancer ; 146(1): 181-191, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31090066

ABSTRACT

Mechanisms of viral oncogenesis are diverse and include the off-target activity of enzymes expressed by the infected cells, which evolved to target viral genomes for controlling their infection. Among these enzymes, the single-strand DNA editing capability of APOBECs represent a well-conserved viral infection response that can also cause untoward mutations in the host DNA. Here we show, after evaluating somatic single-nucleotide variations and transcriptome data in 240 gastric cancer samples, a positive correlation between APOBEC3s mRNA-expression and the APOBEC-mutation signature, both increased in EBV+ tumors. The correlation was reinforced by the observation of APOBEC mutations preferentially occurring in the genomic loci of the most active transcripts. This EBV infection and APOBEC3 mutation-signature axis were confirmed in a validation cohort of 112 gastric cancer patients. Our findings suggest that APOBEC3 upregulation in EBV+ cancer may boost the mutation load, providing further clues to the mechanisms of EBV-induced gastric carcinogenesis. After further validation, this EBV-APOBEC axis may prove to be a secondary driving force in the mutational evolution of EBV+ gastric tumors, whose consequences in terms of prognosis and treatment implications should be vetted.


Subject(s)
Cytidine Deaminase/genetics , DNA, Neoplasm/genetics , Herpesvirus 4, Human/pathogenicity , Stomach Neoplasms/virology , APOBEC Deaminases , Carcinogenesis , Genes, Viral , Herpesvirus 4, Human/genetics , Humans , Mutation , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...