Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 20(1): 157-166, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35100163

ABSTRACT

Drinking water consumption is essential to maintain a good quality of life, but it is not available for all communities. Therefore, this work aimed to develop an alternative and accessible process for water treatment, based on filtration and solar disinfection, and evaluate it in both bench and pilot scales. The construction cost of the system was estimated and compared with other available options so that its economic viability could be discussed. For this purpose, water from a stream was collected and analyzed. A filter made of PVC tubes, sand, and gravel was built, acting, respectively, as a column, filtering medium, and support layer. As for the disinfection process, the SODIS (Solar Water Disinfection) methodology was adopted. The water was exposed to the sun, and the best exposure time was determined based on the analysis of total coliforms and E. coli. Finally, a prototype was built for a flow rate of 37.5 L d-1, consisting of two filters operating at a filtration rate of 2.38 m3 m-2 d-1. About 97% turbidity removal was obtained, as well as 99.9% for total coliforms and 99.1% for E. coli. It is estimated that the cost of building a water treatment system for one person is approximately USD 29.00.


Subject(s)
Disinfection , Water Purification , Escherichia coli , Filtration , Humans , Quality of Life
2.
Sci Total Environ ; 746: 141011, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32763601

ABSTRACT

The presence of pharmaceutically active compounds (PhACs) in water supply systems has been generating great concern about their effects on the environment and human health. Twenty-eight PhACs were monitored during one year in four Brazilian water sources, aiming to understand the factors that influence their occurrence and removal in conventional drinking water treatment plants (DWTPs) and to assess the environmental and human health risks. Trace levels of PhACs were detected in surface and drinking water in all assessed water sources. Effects of seasonality and socioeconomic aspects were observed in PhACs occurrence, like their higher concentrations during winter and in locales with higher values of gross domestic product per capita and human development index. Betamethasone, prednisone, and fluconazole were the most commonly detected PhACs, and also presented the highest concentrations. However, they were not related to toxicological risks. Nonetheless, all surface waters were subject to toxicological risk owing to at least one PhAC. PhACs related to the highest toxicological risks were loratadine, atorvastatin, norfloxacin, caffeine, and ranitidine, however, all these PhACs presented low quantification frequency. DWTPs capacity to remove PhACs was only partial, so treated water was still contaminated with these compounds. Furthermore, atorvastatin presented a margin of exposure below 100, indicating possible risk for public health. Thus, additional advanced treatment steps should be considered to improve PhACs removal during drinking water treatment.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Water Purification , Brazil , Environmental Monitoring , Humans , Risk Assessment , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...