Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Rheumatol ; 40(7): 2727-2734, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33570702

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the expression of salivary Toll-like receptors (TRL) 2 and 4 in patients with systemic lupus erythematosus (SLE) and chronic periodontitis (CP). METHODS: A case-control study was conducted with 77 participants (42 SLE and 35 non-SLE) stratified according to CP diagnosis criteria. Periodontal parameters consisted of clinical attachment level (CAL), probing depth (PD), the visible plaque index (VPI), and the gingival bleeding index (GBI). Salivary TRL 2 and 4 expressions were determined by quantitative real-time polymerase chain reaction (RT-PCR). Statistical analysis included Mann-Whitney U test, Kruskal-Wallis test, Spearman's correlation rank, and multiple linear regression. RESULTS: Patients with isolated SLE or CP had higher TLR 2 and TLR 4 expression in their saliva samples (P < 0.05). The group with both SLE and CP had lower TLR 2 and 4 expressions (P < 0.05). TLR 2 and TLR 4 showed significant negative correlations with PD, CAL, and GBI in SLE patients, and a significant positive correlation with periodontal parameters in non-SLE patients. CP was independently associated with reduction of TLR2 and TLR4 expression, even after adjusting for clinical data and current drug use. CONCLUSION: Reduced TRL 2 and 4 expression in saliva was associated with the presence of CP in SLE patients. Key Points • Patients affected by isolated CP or SLE had higher TLR2 and TLR4 expression. • TLR under-expression may be associated with a worse periodontal status in SLE. • Abnormalities in TLRs expression may increase the susceptibility to periodontitis.


Subject(s)
Chronic Periodontitis , Lupus Erythematosus, Systemic , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Case-Control Studies , Humans , Saliva
2.
Front Microbiol ; 9: 1351, 2018.
Article in English | MEDLINE | ID: mdl-30018595

ABSTRACT

The Candida genus comprises opportunistic fungi that can become pathogenic when the immune system of the host fails. Candida albicans is the most important and prevalent species. Polyenes, fluoropyrimidines, echinocandins, and azoles are used as commercial antifungal agents to treat candidiasis. However, the presence of intrinsic and developed resistance against azole antifungals has been extensively documented among several Candida species. The advent of original and re-emergence of classical fungal diseases have occurred as a consequence of the development of the antifungal resistance phenomenon. In this way, the development of new satisfactory therapy for fungal diseases persists as a major challenge of present-day medicine. The design of original drugs from traditional medicines provides new promises in the modern clinic. The urgent need includes the development of alternative drugs that are more efficient and tolerant than those traditional already in use. The identification of new substances with potential antifungal effect at low concentrations or in combination is also a possibility. The present review briefly examines the infections caused by Candida species and focuses on the mechanisms of action associated with the traditional agents used to treat those infections, as well as the current understanding of the molecular basis of resistance development in these fungal species. In addition, this review describes some of the promising alternative molecules and/or substances that could be used as anticandidal agents, their mechanisms of action, and their use in combination with traditional drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...