Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9531, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308525

ABSTRACT

Host Defense Peptides (HDPs) have, in previous studies, been demonstrating antimicrobial, anti-inflammatory, and immunomodulatory capacity, important factors in the repair process. Knowing these characteristics, this article aims to evaluate the potential of HDPs IDR1018 and DJK-6 associated with MTA extract in the repair process of human pulp cells. Antibacterial activity of HDPs, MTA and HDPs combined with MTA in Streptococcus mutans planktonic bacteria and antibiofilm activity was evaluated. Cell toxicity was assayed with MTT and cell morphology was observed by scanning electron microscopy (SEM). Proliferation and migration of pulp cells were evaluated by trypan blue and wound healing assay. Inflammatory and mineralization related genes were evaluated by qPCR (IL-6, TNFRSF, DSPP, TGF-ß). Alkaline phosphatase, phosphate quantification and alizarin red staining were also verified. The assays were performed in technical and biological triplicate (n = 9). Results were submitted for the calculation of the mean and standard deviation. Then, normality verification by Kolmogorov Smirnov test, analyzing one-way ANOVA. Analyses were considered at a 95% significance level, with a p-value < 0.05. Our study demonstrated that HDPs combined with MTA were able to reduce biofilms performed in 24 h and biofilm performed over 7 days S. mutans biofilm (p < 0.05). IDR1018 and MTA, as well as their combination, down-regulated IL-6 expression (p < 0.05). Tested materials were not cytotoxic to pulp cells. IDR1018 induced high cell proliferation and combined with MTA induced high cellular migration rates in 48 h (p < 0.05). Furthermore, the combination of IDR1018 and MTA also induced high expression levels of DSPP, ALP activity, and the production of calcification nodules. So, IDR-1018 and its combination with MTA could assist in pulp-dentine complex repair process in vitro.


Subject(s)
Calcinosis , Dental Pulp , Humans , Interleukin-6 , Antimicrobial Cationic Peptides , Alkaline Phosphatase , Analysis of Variance
2.
Article in English | MEDLINE | ID: mdl-31216717

ABSTRACT

This study aimed to verify the association between autonomic cardiac function (CAF) and the integration of caloric expenditure by physical activity (PA) intensity, sedentary behavior (SB), and sleep quality (PSQI) in active young men. Thirty-five subjects were included, and caloric expenditure in moderate-to-vigorous and light-intensity PA, SB, and PSQI were assessed using questionnaires. Heart rate variability (HRV) was recorded for short periods of time in the supine and orthostatic positions. Multiple linear regression was realized unadjusted and adjusted for covariables, such as age, body mass index, and fat mass. No adjusted analysis indicated that, in the supine position, there were negative associations between the SB and the TP, HF, and NorHF indices, and positive associations between SB and NorLF and LF/HF. In the orthostatic position, an interaction between SB and NorLF was found. Significance of proportion with the TP, HF, and LF/HF indices was confirmed. When adjusted, for the supine position, negative interactions were documented between SB and the TP as well as the HF indices, and between PSQI and the LF/HF index, with interference under the HF and LF/HF indices. Finally, our findings indicate that the proposed approach interacts with CAF, and SB is significantly related to CAF in young active men.


Subject(s)
Exercise , Heart/physiology , Life Style , Sedentary Behavior , Adolescent , Adult , Autonomic Nervous System/physiology , Heart Rate , Humans , Linear Models , Male , Young Adult
3.
Front Physiol ; 9: 374, 2018.
Article in English | MEDLINE | ID: mdl-29695977

ABSTRACT

Accumulation of connective tissue, particularly extracellular matrix (ECM) proteins, has been observed in skeletal muscles with advancing age. Resistance training (RT) has been widely recommended to attenuate age-induced sarcopenia, even though its effects on the components that control ECM turnover in skeletal muscles remain to be elucidated. Thus, the aim of this study was to determine the effects of RT on connective tissue content and gene expression of key components of ECM in the skeletal muscles of aged rats. Young (3 mo.) and older (21 mo.) adult male Wistar rats were submitted to a RT protocol (ladder climbing with 65, 85, 95, and 100% load), 3 times a week for 12 weeks. Forty-eight hours post-training, the soleus (SOL) and gastrocnemius (GAS) muscles were dissected for histological and mRNA analysis. RT mitigated the age-associated increase of connective tissue content in both muscles, even though mRNA levels of COL-1 and-3 were elevated in older trained rats. Overall, RT significantly elevated the gene expression of key components of connective tissue deposition (TGFß and CTGF; MMP-2 and-9; TIMP-1 and-2) in the GAS and SOL muscles of older rats. In conclusion, RT blunted the age-induced accumulation of connective tissue concomitant to the upregulation of genes related to synthesis and degradation of the ECM network in the SOL and GAS muscles of older rats. Although our findings indicate that RT plays a crucial role reducing connective tissue accumulation in aged hindlimb muscles, key components of ECM turnover were paradoxically elevated. The phenotypic responses induced by RT were not accompanied by the gene expression of those components related to ECM turnover.

4.
Front Microbiol ; 6: 1162, 2015.
Article in English | MEDLINE | ID: mdl-26579080

ABSTRACT

The fungus Sclerotinia sclerotiorum (Lib.) de Bary, one of the most important plant pathogens, causes white mold on a wide range of crops. Crop yield can be dramatically decreased due to this disease, depending on the plant cultivar and environmental conditions. In this study, a suppression subtractive hybridization cDNA library approach was used for the identification of pathogen and plant genes that were differentially expressed during infection of the susceptible cultivar BRS Pérola of Phaseolus vulgaris L. A total of 979 unigenes (430 contigs and 549 singletons) were obtained and classified according to their functional categories. The transcriptional profile of 11 fungal genes related to pathogenicity and virulence were evaluated by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Additionally, the temporal expression profile obtained by RT-qPCR was evaluated for the following categories of plant defense-related genes: pathogenesis-related genes (PvPR1, PvPR2, and PvPR3), phenylpropanoid pathway genes (PvIsof, PvFPS1, and 4CL), and genes involved in defense and stress-related categories (PvLox, PvHiprp, PvGST, PvPod, and PvDox). Data obtained in this study provide a starting point for achieving a better understanding of the pathosystem S. sclerotiorum-P. vulgaris.

5.
PLoS One ; 10(9): e0138314, 2015.
Article in English | MEDLINE | ID: mdl-26380986

ABSTRACT

Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4 Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known.


Subject(s)
Bone Diseases, Developmental/genetics , Exome/genetics , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA/methods , Bone Diseases, Developmental/diagnosis , Cohort Studies , DNA Mutational Analysis/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Polymorphism, Single Nucleotide
6.
BMC Physiol ; 12: 11, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22950628

ABSTRACT

BACKGROUND: Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises. RESULTS: Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. α-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. α-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. α-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. CONCLUSIONS: High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, α-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also represented a significant degree of cellular injury, when compared with the individuals submitted to low and moderate intensities.


Subject(s)
Heart/physiopathology , Myocardium/metabolism , Physical Conditioning, Animal/physiology , Proteome/metabolism , Swimming/physiology , Animals , Cation Transport Proteins/metabolism , Energy Metabolism/physiology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Male , Metabolic Detoxication, Phase I/physiology , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , NADH Dehydrogenase/metabolism , Proteomics/methods , Rats , Rats, Wistar , Troponin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...