Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 203: 115161, 2022 09.
Article in English | MEDLINE | ID: mdl-35787994

ABSTRACT

Cancers have a strong relationship with immune cells in their microenvironment, which significantly influences tumor proliferation and progression. Thus, pharmacological strategies that stimulate the immune system to combat tumor cells are promising for better therapeutic efficacy. Deregulated expression of the splicing regulatory serine arginine protein kinases (mostly SRPK1 and SRPK2) has been found in different cancer types, leading to the expression of isoforms related to tumor growth and metastasis. The microenvironment of melanoma exhibits a strong presence of immune cells, which significantly influences tumor progression, and around 50% of cutaneous melanoma patients benefit from targeted immunotherapy. Here, we analyzed human malignant melanoma single-cell gene expression data and observed that SRPK1/2 overexpression correlates with immune system pathway alterations. In further analysis, we observed an increased presence of immune cells in biopsies from mice bearing metastatic melanoma treated with SRPIN340, a well-known SRPK1/2 pharmacological inhibitor. Local treatments increased the expression of proinflammatory cytokines at the tumor lesions and the activity of the spleen, accompanied by reduced pulmonary metastasis foci, edema formation, and alveolar congestion. In in vitro assays, SRPIN340 also potentiated immunological susceptibility, by increasing the expression of the antigen presenting MHCI and MHCII molecules and by increasing the ability of B16F10 cells to attract splenic cells in transwell assays. Taken together, these results reveal that the antimetastatic effect of SRPIN340 can also involve an increased immune response, which suggests additional functional clues for SRPKs in tumor biology.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Humans , Immunity , Melanoma/drug therapy , Mice , Niacinamide/analogs & derivatives , Piperidines , Protein Serine-Threonine Kinases , Skin Neoplasms/drug therapy , Tumor Microenvironment
2.
Pest Manag Sci ; 73(11): 2360-2371, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28544262

ABSTRACT

BACKGROUND: The photosynthetic apparatus is targeted by various herbicides, including several amides such as diuron and linuron. Considering the need for the discovery of new active ingredients to cope with weed resistance, the synthesis of a series of trifluoromethyl aryl amides is herein described whose inhibitory properties were assessed in vitro on the photosynthetic electron transport chain, and in vivo on the growth of a model cyanobacterial strain. Theoretical studies were also carried out. RESULTS: Starting with 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, the preparation of the amides was achieved via a three-step sequence, namely nucleophilic aromatic substitution, reduction with SnCl2 /HCl, and acylation reactions. The measurement of ferricyanide reduction by functionally intact spinach chloroplasts showed that several derivatives are capable of inhibiting the photosynthetic apparatus. The most active amides presented IC50 values close to 1 µmol L-1 , and showed the presence of a 4-bromophenyl group as a common structural feature. The addition of these brominated amides to the culture medium of a model cyanobacterial strain, Synechococcus elongatus PCC 6301, caused various degrees of growth inhibition. Theoretical studies (molecular modeling and quantitative structure-activity relationship) of all amides and their comparison with some known herbicides confirmed these experimental findings and provided more in-depth information about the possible molecular target of these compounds. CONCLUSION: Trifluoromethyl amides herein described, which were shown to act at the PSII level, may represent a novel scaffold to be exploited aiming at the development of new active ingredients for weed control. © 2017 Society of Chemical Industry.


Subject(s)
Herbicides/pharmacology , Photosynthesis/drug effects , Chloroplasts/drug effects , Electron Transport , Herbicides/chemical synthesis , Herbicides/toxicity , Models, Molecular , Quantitative Structure-Activity Relationship , Spinacia oleracea/drug effects , Synechococcus/drug effects , Weed Control
SELECTION OF CITATIONS
SEARCH DETAIL
...