Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 472(12): 1757-1768, 2020 12.
Article in English | MEDLINE | ID: mdl-33040159

ABSTRACT

This study aimed to evaluate the physical exercise-induced neuronal activation in brain nuclei controlling thermoregulatory responses in hypertensive and normotensive rats. Sixteen-week-old male normotensive Wistar rats (NWRs) and spontaneously hypertensive rats (SHRs) were implanted with an abdominal temperature sensor. After recovery, the animals were subjected to a constant-speed treadmill running (at 60% of the maximum aerobic speed) for 30 min at 25 °C. Core (Tcore) and tail-skin (Tskin) temperatures were measured every minute during exercise. Ninety minutes after the exercise, the rats were euthanized, and their brains were collected to determine the c-Fos protein expression in the following areas that modulate thermoregulatory responses: medial preoptic area (mPOA), paraventricular hypothalamic nucleus (PVN), and supraoptic nucleus (SON). During treadmill running, the SHR group exhibited a greater increase in Tcore and an augmented threshold for cutaneous heat loss relative to the NWR group. In addition, the SHRs showed reduced neuronal activation in the mPOA (< 49.7%) and PVN (< 44.2%), but not in the SON. The lower exercise-induced activation in the mPOA and PVN in hypertensive rats was strongly related to the delayed onset of cutaneous heat loss. We conclude that the enhanced exercise-induced hyperthermia in hypertensive rats can be partially explained by a delayed cutaneous heat loss, which is, in turn, associated with reduced activation of brain areas modulating thermoregulatory responses.


Subject(s)
Body Temperature Regulation , Hypertension/physiopathology , Hypothalamus/physiopathology , Running , Animals , Male , Rats , Rats, Inbred SHR , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...