Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 123(1): 124-133, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28383792

ABSTRACT

AIMS: In this paper, we introduce a new Burkholderia contaminans capable of producing a newly characterized polymer. METHODS AND RESULTS: CG-MS and magnetic nuclear resonance 1 H and 13 C were used to determine the constitution of polymers produced in glucose, glucose with casein, sucrose and sucrose with casein. Three pairs of primers were used to find the polyhydroxyalkanoates (PHA) synthase class and sequence. The synthesized polymers were composed by short-chain length PHA (scl-PHA), especially polyhydroxybutyrate (PHB), and medium chain length PHA (mcl-PHA), especially polyhydroxydodecanoate (PHDd), and their concentration, constitution and molecular weight depend on carbon source used. The bacterium showed only class I synthase which could not explain the mcl-PHA production. CONCLUSIONS: Burkholderia contaminans has a class I PHA synthase and produces PHB combined to PHDd when cultivated in sucrose or glucose, and PHDd concentration is affected when casein is used. SIGNIFICANCE AND IMPACT OF THE STUDY: PHA are natural polymers produced by a wide range of bacteria. The presence of PHDd monomers confers to the polymer elastomeric properties. Previously, PHDd was only obtained when bacteria were cultivated in related carbon source. In this work, B. contaminansIPT553 produced PHB with PHDd using simple and low-cost carbon sources that can make possible the cheaper production of a more flexible biopolymer with crystallinity and elasticity different from the more common PHAs.

2.
FEMS Microbiol Lett ; 193(1): 179-85, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11094298

ABSTRACT

In the genome of Burkholderia cepacia strain IPT64, which accumulates a blend of the two homopolyesters poly(3-hydroxybutyrate), poly(3HB), and poly(3-hydroxy-4-pentenoic acid), poly(3H4PE), from sucrose or gluconate as single carbon source, the polyhydroxyalkanoate (PHA) synthase structural gene was disrupted by the insertion of a chloramphenicol-resistant gene cassette (phaC1::Cm). The suicide vector pSUP202 harboring phaC1::Cm was transferred to B. cepacia by conjugation. The inactivated gene was integrated into the chromosome of B. cepacia by homologous recombination. This mutant and also 15 N-methyl-N'-nitrosoguanidine (NMG)-induced mutants still accumulated low amounts of PHAs and expressed low PHA synthase activity. The analysis of the mutant phaC1::Cm showed that it accumulated about 1% of PHA consisting of 68.2 mol% 3HB and 31.8 mol% 3H4PE from gluconate. The wild-type, in contrast, accumulated 49.3% of PHA consisting of 96.5 mol% 3HB and 3. 5 mol% 3H4PE. Our results indicated that the genome of B. cepacia possesses at least two PHA synthase genes, which probably have different substrate specificities.


Subject(s)
Acyltransferases/genetics , Burkholderia cepacia/genetics , Burkholderia cepacia/metabolism , Genes, Bacterial , Polyesters/metabolism , 3-Hydroxybutyric Acid/metabolism , Acyltransferases/metabolism , Blotting, Southern , Genome, Bacterial , Hydroxybutyrates/metabolism , Mutation , Pentanoic Acids/metabolism , Recombination, Genetic , Substrate Specificity , Valerates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...