Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 127(2): 834-41, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-23140743

ABSTRACT

Lupin and soya are members of the Leguminosae family which are recognised as some of the richest source of vegetable proteins. Lupin- and soya-containing products are available on the EU market and could cause severe adverse reactions in allergic individuals, even if consumed at low concentrations. In this context the development of methods for reliable detection of these allergens in food products is a useful tool for the surveillance of established legislation on food labelling within the EU. This work described the development of a duplex real-time PCR method allowing the simultaneous detection of traces of lupin and soya in processed food based on a specific TaqMan® probe designed on a mitochondrial tRNA-MET gene. A set of primers and probes was designed for the amplification of a 168 and 175bp fragment of lupin and soya mitochondrial DNA, respectively. The performance of the method was established using lupin and soya flours and cookies baked from lupin- and soya-containing dough (different concentrations and baking times). The PCR platform yielded consistent and repeatable results. The specificity of the system was tested with DNA from 28 plant species. The sensitivity of the method was suitable to detect allergenic ingredients in the low mg per kg range. Both lupin and soya at a level of 2.5mg per kg food matrix could be detected in cookies baked at 180°C for 10min. The method was successfully applied to bakery (e.g. bread) and vegetarian (e.g. non-meat sausages) food products that contain or may contain soya and/or lupin as ingredient or contaminant (according to the declaration on the product label).

2.
Genetics ; 163(2): 699-710, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12618407

ABSTRACT

To increase the utility of Antirrhinum for genetic and evolutionary studies, we constructed a molecular linkage map for an interspecific hybrid A. majus x A. molle. An F(2) population (n = 92) was genotyped at a minimum of 243 individual loci. Although distorted transmission ratios were observed at marker loci throughout the genome, a mapping strategy based on a fixed framework of codominant markers allowed the loci to be placed into eight robust linkage groups consistent with the haploid chromosome number of Antirrhinum. The mapped loci included 164 protein-coding genes and a similar number of unknown sequences mapped as AFLP, RFLP, ISTR, and ISSR markers. Inclusion of sequences from mutant loci allowed provisional alignment of classical and molecular linkage groups. The total map length was 613 cM with an average interval of 2.5 cM, but most of the loci were aggregated into clusters reducing the effective distance between markers. Potential causes of transmission ratio distortion and its effects on map construction were investigated. This first molecular linkage map for Antirrhinum should facilitate further mapping of mutations, major QTL, and other coding sequences in this model genus.


Subject(s)
Antirrhinum/genetics , Chromosome Mapping , Hybridization, Genetic , Genetic Linkage , Polymorphism, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...