Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 337: 122141, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710568

ABSTRACT

Production of value-added compounds and sustainable materials from agro-industrial residues is essential for better waste management and building of circular economy. This includes valorization of hemicellulosic fraction of plant biomass, the second most abundant biopolymer from plant cell walls, aiming to produce prebiotic oligosaccharides, widely explored in food and feed industries. In this work, we conducted biochemical and biophysical characterization of a prokaryotic two-domain R. champanellensis xylanase from glycoside hydrolase (GH) family 30 (RcXyn30A), and evaluated its applicability for XOS production from glucuronoxylan in combination with two endo-xylanases from GH10 and GH11 families and a GH11 xylobiohydrolase. RcXyn30A liberates mainly long monoglucuronylated xylooligosaccharides and is inefficient in cleaving unbranched oligosaccharides. Crystallographic structure of RcXyn30A catalytic domain was solved and refined to 1.37 Å resolution. Structural analysis of the catalytic domain releveled that its high affinity for glucuronic acid substituted xylan is due to the coordination of the substrate decoration by several hydrogen bonds and ionic interactions in the subsite -2. Furthermore, the protein has a larger ß5-α5 loop as compared to other GH30 xylanases, which might be crucial for creating an additional aglycone subsite (+3) of the catalytic site. Finally, RcXyn30A activity is synergic to that of GH11 xylobiohydrolase.


Subject(s)
Endo-1,4-beta Xylanases , Gastrointestinal Microbiome , Glucuronates , Oligosaccharides , Xylosidases , Glucuronates/metabolism , Glucuronates/chemistry , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Xylosidases/metabolism , Xylosidases/chemistry , Humans , Crystallography, X-Ray , Xylans/chemistry , Xylans/metabolism , Catalytic Domain , Models, Molecular , Substrate Specificity
2.
Carbohydr Polym ; 329: 121739, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286536

ABSTRACT

Carbohydrate-active enzymes from the glycoside hydrolase family 9 (GH9) play a key role in processing lignocellulosic biomass. Although the structural features of some GH9 enzymes are known, the molecular mechanisms that drive their interactions with cellulosic substrates remain unclear. To investigate the molecular mechanisms that the two-domain Bacillus licheniformis BlCel9A enzyme utilizes to depolymerize cellulosic substrates, we used a combination of biochemical assays, X-ray crystallography, small-angle X-ray scattering, and molecular dynamics simulations. The results reveal that BlCel9A breaks down cellulosic substrates, releasing cellobiose and glucose as the major products, but is highly inefficient in cleaving oligosaccharides shorter than cellotetraose. In addition, fungal lytic polysaccharide oxygenase (LPMO) TtLPMO9H enhances depolymerization of crystalline cellulose by BlCel9A, while exhibiting minimal impact on amorphous cellulose. The crystal structures of BlCel9A in both apo form and bound to cellotriose and cellohexaose were elucidated, unveiling the interactions of BlCel9A with the ligands and their contribution to substrate binding and products release. MD simulation analysis reveals that BlCel9A exhibits higher interdomain flexibility under acidic conditions, and SAXS experiments indicate that the enzyme flexibility is induced by pH and/or temperature. Our findings provide new insights into BlCel9A substrate specificity and binding, and synergy with the LPMOs.


Subject(s)
Cellulose , Glycoside Hydrolases , Glycoside Hydrolases/metabolism , Scattering, Small Angle , X-Ray Diffraction , Cellulose/chemistry , Carbohydrates , Substrate Specificity
3.
Protein Sci ; 31(1): 251-258, 2022 01.
Article in English | MEDLINE | ID: mdl-34761467

ABSTRACT

SAXSMoW (SAXS Molecular Weight) is an online platform widely used over the past few years for determination of molecular weights of proteins in dilute solutions. The scattering intensity retrieved from small-angle X-ray scattering (SAXS) raw data is the sole input to SAXSMoW for determination of molecular weights of proteins in liquid. The current updated SAXSMoW version 3.0 determines the linear dependence of the true protein volume on their apparent protein volume, based on SAXS curves calculated for 67,000 protein structures selected from the Protein Data Bank. SAXSMoW 3.0 was tested against 43 experimental SAXS scattering curves from proteins with known molecular weights. Our results demonstrate that most of the molecular weights determined for the nonglycosylated and also for the glycosylated proteins are in good agreement with their expected molecular weights. Additionally, the average discrepancies between the calculated molecular weights and their nominal values for glycosylated proteins are similar to those for nonglycosylated ones.


Subject(s)
Databases, Protein , Molecular Dynamics Simulation , Proteins/chemistry , Scattering, Small Angle , Software , X-Ray Diffraction , Molecular Weight
4.
Biochim Biophys Acta Gen Subj ; 1864(10): 129681, 2020 10.
Article in English | MEDLINE | ID: mdl-32653619

ABSTRACT

Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.


Subject(s)
Alcohol Oxidoreductases/metabolism , Ascomycota/enzymology , Alcohol Oxidoreductases/chemistry , Ascomycota/chemistry , Ascomycota/metabolism , Binding Sites , Calcium/metabolism , Crystallography, X-Ray , Enzyme Stability , Hydrogen Peroxide/metabolism , Models, Molecular , Protein Conformation , Substrate Specificity , Temperature
5.
Eur Biophys J ; 49(6): 435-447, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32683479

ABSTRACT

Bacterial esterases are highly versatile enzymes, currently widely used in detergents, biosurfactants, bioemulsifiers and as biocatalysts in paper and food industries. Present work describes heterologous expression, purification, and biophysical and biochemical characterization of a halotolerant esterase from Bacillus licheniformis (BlEstA). BlEstA preferentially cleaves pNP-octanoate and both activity and stability of the enzyme increased in the presence of 2 M NaCl, and also with several organic solvents (ethanol, methanol and DMSO). Furthermore, BlEstA has considerable emulsifying properties, particularly with olive oil as substrate. Our studies also show that the enzyme is monomeric in solution and its small-angle X-ray scattering low-resolution molecular envelope fits well its high-resolution homology model.


Subject(s)
Bacillus licheniformis/enzymology , Emulsifying Agents/chemistry , Emulsifying Agents/metabolism , Esterases/chemistry , Esterases/metabolism , Biocatalysis , Hydrogen-Ion Concentration , Models, Molecular , Phylogeny , Protein Conformation , Sodium Chloride/pharmacology , Substrate Specificity , Temperature
6.
Appl Microbiol Biotechnol ; 103(3): 1275-1287, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30547217

ABSTRACT

Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.


Subject(s)
Bacillus licheniformis/enzymology , Bacillus licheniformis/metabolism , Cellulase/metabolism , Glycoside Hydrolases/metabolism , Lignin/metabolism , Catalysis , Cellobiose/biosynthesis , Cellulose/analogs & derivatives , Cellulose/biosynthesis , Glucose/biosynthesis , Hydrogen-Ion Concentration , Scattering, Small Angle , Tetroses/biosynthesis , Trioses/biosynthesis , X-Ray Diffraction
7.
Int J Biol Macromol ; 111: 302-310, 2018 May.
Article in English | MEDLINE | ID: mdl-29292147

ABSTRACT

Economic sustainability of modern biochemical technologies for plant cell wall transformations in renewable fuels, green chemicals, and sustainable materials is considerably impacted by the elevated cost of enzymes. Therefore, there is a significant drive toward discovery and characterization of novel carbohydrate-active enzymes. Here, the BlCel48 cellulase from Bacillus licheniformis, a glycoside hydrolase family 48 member (GH48), was functionally and biochemically characterized. The enzyme is catalytically stable in a broad range of temperatures and pH conditions with its enzymatic activity at pH5.0 and 60°C. BlCel48 exhibits high hydrolytic activity against phosphoric acid swollen cellulose (PASC) and bacterial cellulose (BC) and significantly lower activity against carboxymethylcellulose (CMC). BlCel48 releases predominantly cellobiose, and also small amounts of cellotriose and cellotetraose as products from PASC hydrolysis. Small-angle X-ray scattering (SAXS) data analysis revealed a globular molecular shape and monomeric state of the enzyme in solution. Its molecular mass estimated based on SAXS data is ~77.2kDa. BlCel48 has an (αα)6-helix barrel-fold, characteristic of GH48 members. Comparative analyses of homologous sequences and structures reveal the existence of two distinct loops in BlCel48 that were not present in other structurally characterized GH48 enzymes which could have importance for the enzyme activity and specificity.


Subject(s)
Bacillus licheniformis/enzymology , Carboxymethylcellulose Sodium/chemistry , Cellulase/chemistry , Cellulose/analogs & derivatives , Tetroses/chemistry , Bacillus licheniformis/chemistry , Cellulose/chemistry , Hydrolysis , Kinetics , Scattering, Small Angle , Substrate Specificity , X-Ray Diffraction
8.
Mol Biotechnol ; 58(12): 777-788, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27670285

ABSTRACT

The marine bacteria Saccharophagus degradans (also known as Microbulbifer degradans), are rod-shaped and gram-negative motile γ-proteobacteria, capable of both degrading a variety of complex polysaccharides and fermenting monosaccharides into ethanol. In order to obtain insights into structure-function relationships of the enzymes, involved in these biochemical processes, we characterized a S. degradans ß-glycosidase from glycoside hydrolase family 1 (SdBgl1B). SdBgl1B has the optimum pH of 6.0 and a melting temperature T m of approximately 50 °C. The enzyme has high specificity toward short D-glucose saccharides with ß-linkages with the following preferences ß-1,3 > ß-1,4 â‰« ß-1,6. The enzyme kinetic parameters, obtained using artificial substrates p-ß-NPGlu and p-ß-NPFuc and also the disaccharides cellobiose, gentiobiose and laminaribiose, revealed SdBgl1B preference for p-ß-NPGlu and laminaribiose, which indicates its affinity for glucose and also preference for ß-1,3 linkages. To better understand structural basis of the enzyme activity its 3D model was built and analysed. The 3D model fits well into the experimentally retrieved low-resolution SAXS-based envelope of the enzyme, confirming monomeric state of SdBgl1B in solution.


Subject(s)
Gammaproteobacteria/enzymology , Glucosidases/chemistry , Glucosidases/metabolism , Sucrose/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Gammaproteobacteria/chemistry , Gammaproteobacteria/genetics , Glucosidases/genetics , Hydrogen-Ion Concentration , Models, Molecular , Scattering, Small Angle , Substrate Specificity , Transition Temperature , X-Ray Diffraction
9.
Article in English | MEDLINE | ID: mdl-23722852

ABSTRACT

Xyloglucanases (Xghs) are important enzymes involved in xyloglucan modification and degradation. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacterium which produces a large number of glycosyl hydrolases (GH), but has only one family 74 GH (Xcc-Xgh). This enzyme was overexpressed in Escherichia coli, purified and crystallized. Diffraction data sets were collected for the native enzyme and its complex with glucose to maximum resolutions of 2.0 and 2.1 Å, respectively. The data were indexed in a hexagonal crystal system with unit-cell parameters a = b = 153.4, c = 84.9 Å. As indicated by molecular-replacement solution, the crystals belonged to space group P6(1).


Subject(s)
Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Xanthomonas campestris/enzymology , Bacterial Proteins/analysis , Crystallization , Glycoside Hydrolases/analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...