Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Ethnopharmacol ; 303: 115991, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36470307

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochia triangularis Cham. has been used in Brazilian traditional medicine for various therapeutic purposes, including as a leaf-based infusion for diabetes management. AIM OF THE STUDY: This study was designed to chemically characterize an infusion of in natura A. triangularis leaves and evaluate the in vivo anti-hyperglycemic properties of this infusion. MATERIALS AND METHODS: Chemical composition was examined using liquid-liquid extraction procedure, chromatographic methods, NMR, and LC-MS/MS. The in vivo anti-hyperglycemic activity of the freeze-dried infusion of A. triangularis leaves (Inf-L-At) was assessed using oral glucose tolerance test (OGTT). Initially, normoglycemic male rats were pre-treated with orally administered Inf-L-At at doses of 62.5, 125, and 250 mg/kg for two consecutive days. On the day of the OGTT, fasting animals received a glucose load (4 g/kg) 30 min after treatment with Inf-L-At, and the blood glucose levels were verified at 15, 30, 60, and 180 min. Intestinal maltase, lactase, and sucrase activities and muscle and liver glycogen contents were also assessed after the OGTT. RESULTS: Inf-L-At extract led to glycemic reduction with no dose-response at 15, 30, and 60 min comparable to that of the antidiabetic drug glibenclamide and was accompanied by an increase in hepatic and muscle glycogen contents. Additionally, there was a significant statistically decrease in the in vitro activity of disaccharidases. Maltase and sucrase activities were inhibited at all doses, whereas lactase activity was inhibited only at 62.5 and 250 mg/kg. In total, 75 compounds were found in the infusion, including seven new ones, (7S*,8S*,7ꞌS*,8ꞌR*)-4,4ꞌ-dihydroxy-3,3ꞌ-dimethoxy-7,9ꞌ-epoxylignan-7ꞌ-ol; 4ꞌ-hydroxy-3ꞌ-methoxy-3,4-methylenedioxy-7,9ꞌ-epoxylignan-9,7ꞌ-diol; triangularisines A, B, and C; N-ethyl-N-methyl-affineine; and N-methyl pachyconfine, and one previously not described as a natural product, epi-secoisolariciresinol monomethyl ether. CONCLUSION: The results demonstrated the anti-hyperglycemic activity of the infusion from A. triangularis leaves and showed that it is a rich source of lignoids, alkaloids, and glycosylated flavonoids, which are known to exhibit antidiabetic effects and other biological properties that can be beneficial for patients with chronic hyperglycemia, thus certifying the popular use of this herbal drink.


Subject(s)
Aristolochia , Rats , Male , Animals , alpha-Glucosidases , Plant Extracts/therapeutic use , Chromatography, Liquid , Brazil , Tandem Mass Spectrometry , Hypoglycemic Agents/therapeutic use , Plant Leaves/chemistry , Lactase , Sucrase , Blood Glucose
2.
J Ethnopharmacol ; 258: 112916, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32360045

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plinia cauliflora (Mart.) Kausel (Myrtaceae) is popularly known as "jaboticaba" or "jaboticaba". The fruit is appreciated for both fresh consumption and the manufacture of jelly, juice, ice cream, fermented beverages, and liqueurs. The more widespread traditional use of the plant involves the treatment of diarrhea, which utilizes all parts of the plant, including the fruit peels. AIM OF THE STUDY: We sought to elucidate possible risks of the administration of an ethanol-soluble fraction that was obtained from an infusion of P. cauliflora fruit peels (SEIPC). We performed a series of experiments to evaluate possible toxicity, in which we administered SEIPC orally both acutely and repeatedly for 28 days. We also evaluated possible endocrine-disruptive and genotoxic effects in eukaryotic cells. The possible mutagenic activity of SEIPC was evaluated using reverse mutation (Ames) assays. MATERIALS AND METHODS: SEIPC was produced and chemically characterized by LC-DAD-MS. Acute toxicity and behavioral and physiological alterations were evaluated in the modified Irwin test. Respiratory rate, arterial blood gas, electrocardiography, respiratory rate, heart rate, and blood pressure were evaluated, and hematological, biochemical, and histopathological analyses were performed after 28 days of oral treatment. The comet assay, mammalian erythrocyte micronucleus test, uterotrophic test, Hershberger bioassay, and AMES test were performed using appropriate protocols. RESULTS: From SEIPC, ellagic acid and derivatives, flavonols and anthocyanidins, as well as citric acid and gallic acid, were annotated by LC-DAD-MS. We did not observed any significant toxic effects after acute or prolonged SEIPC treatment. No endocrine-disruptive or mutagenic effects were observed. CONCLUSIONS: The present study found that SEIPC did not cause any significant alterations of various corporeal systems, including cardiac electrical activity, body temperature, respiratory rate, and arterial pressure. No alterations of biochemical, hematological, or blood gas parameters were observed. SEIPC did not cause any perturbations of the endocrine system or mutagenic, cytotoxic, or genotoxic effects. These findings substantiate the safe clinical use of P. cauliflora.


Subject(s)
Myrtaceae/chemistry , Plant Extracts/toxicity , Administration, Oral , Animals , Female , Fruit , Male , Mutagenicity Tests , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Rats, Wistar , Toxicity Tests
3.
Genet. mol. biol ; 41(1): 154-166, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-892473

ABSTRACT

Abstract The increased incidence of cancer and its high treatment costs have encouraged the search for new compounds to be used in adjuvant therapies for this disease. This study discloses the synthesis of (Z)-4-((1,5-dimethyl-3-oxo-2-phenyl-2,3dihydro-1H-pyrazol-4-yl) amino)-4-oxobut-2-enoic acid (IR-01) and evaluates not only the action of this compound on genetic integrity, increase in splenic phagocytosis and induction of cell death but also its effects in combination with the commercial chemotherapeutic agents doxorubicin, cisplatin and cyclophosphamide. IR-01 was designed and synthesized based on two multifunctionalyzed structural fragments: 4-aminoantipyrine, an active dipyrone metabolite, described as an antioxidant and anti-inflammatory agent; and the pharmacophore fragment 1,4-dioxo-2-butenyl, a cytotoxic agent. The results indicated that IR-01 is an effective chemoprotector because it can prevent clastogenic and/or aneugenic damage, has good potential to prevent genomic damage, can increase splenic phagocytosis and lymphocyte frequency and induces cell death. However, its use as an adjuvant in combination with chemotherapy is discouraged since IR-01 interferes in the effectiveness of the tested chemotherapeutic agents. This is a pioneer study as it demonstrates the chemopreventive effects of IR-01, which may be associated with the higher antioxidant activity of the precursor structure of 4-aminoantipyrine over the effects of the 1,4-dioxo-2-butenyl fragment.

4.
Genet Mol Biol ; 41(1): 154-166, 2018.
Article in English | MEDLINE | ID: mdl-29473933

ABSTRACT

The increased incidence of cancer and its high treatment costs have encouraged the search for new compounds to be used in adjuvant therapies for this disease. This study discloses the synthesis of (Z)-4-((1,5-dimethyl-3-oxo-2-phenyl-2,3dihydro-1H-pyrazol-4-yl) amino)-4-oxobut-2-enoic acid (IR-01) and evaluates not only the action of this compound on genetic integrity, increase in splenic phagocytosis and induction of cell death but also its effects in combination with the commercial chemotherapeutic agents doxorubicin, cisplatin and cyclophosphamide. IR-01 was designed and synthesized based on two multifunctionalyzed structural fragments: 4-aminoantipyrine, an active dipyrone metabolite, described as an antioxidant and anti-inflammatory agent; and the pharmacophore fragment 1,4-dioxo-2-butenyl, a cytotoxic agent. The results indicated that IR-01 is an effective chemoprotector because it can prevent clastogenic and/or aneugenic damage, has good potential to prevent genomic damage, can increase splenic phagocytosis and lymphocyte frequency and induces cell death. However, its use as an adjuvant in combination with chemotherapy is discouraged since IR-01 interferes in the effectiveness of the tested chemotherapeutic agents. This is a pioneer study as it demonstrates the chemopreventive effects of IR-01, which may be associated with the higher antioxidant activity of the precursor structure of 4-aminoantipyrine over the effects of the 1,4-dioxo-2-butenyl fragment.

5.
J Med Food ; 20(8): 804-811, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28557544

ABSTRACT

Genotoxic data of medicinal plants and functional foods are required as part of the risk assessment by international regulatory agencies. Due to its food consumption and ethnopharmacological relevance, pequi oil (Caryocar brasiliense Camb.) is one of these compounds to be studied. The aim of this study was to evaluate the cytotoxic, genotoxic, and clastogenic effects of the oil from the pulp of C. brasiliense (OPCB) in vivo and in vitro. Initially, the Artemia salina in vitro assay was conducted to determine the cells viability rate of different doses of the OPCB. Subsequently, comet assay (Organization for Economic Cooperation and Development, OECD 489) and micronucleus test (OECD 474) were performed in blood and bone marrow of Wistar rats treated orally with a 125, 250, 500, or 1000 mg/kg/bw of the OPCB for 4 weeks. The chemical analysis indicated the presence of ß-carotene and lycopene in the oil. In the A. salina test, all OPCB doses maintained cell viability rates statistically similar to the negative control. The in vivo tests performed showed that OPCB did not show significant genotoxic or clastogenic effects in cells analyzed with the four doses tested. Altogether, these results indicate that, under our experimental conditions, C. brasiliense fruit oil did not reveal genetic toxicity in rat cells.


Subject(s)
Ericales/chemistry , Mutagens/toxicity , Plant Extracts/toxicity , Plant Oils/administration & dosage , Animals , Bone Marrow Cells/drug effects , Carotenoids/analysis , Carotenoids/toxicity , Cells, Cultured , DNA Damage/drug effects , Drug Evaluation, Preclinical , Fruit/chemistry , Lycopene , Male , Micronucleus Tests , Mutagens/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Rats , Rats, Wistar , beta Carotene/analysis , beta Carotene/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...