Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 403: 123932, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264982

ABSTRACT

The present work assessed some engineering approaches, such as the addition of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (50 and 100 µM), microaeration (1 mL air min-1), and nitrate (100-400 mg L-1), for enhancing the biotransformation of the antibiotics sulfamethoxazole (SMX) and trimethoprim (TMP) (200 µg L-1 each) in anaerobic reactors operated at a short hydraulic retention time (7.4 h). Initially, very low removal efficiencies (REs) of SMX and TMP were obtained under anaerobic conditions (∼6%). After adding AQDS, the anaerobic biotransformation of these antibiotics significantly improved, with an increase of approximately 70% in the REs with 100 µM of AQDS. Microaeration also enhanced the biotransformation of SMX and TMP, especially when associated with AQDS, which provided REs above 70%, particularly for TMP (∼91% with 1 mL air min-1 and 50 µM of AQDS). Concerning nitrate, the higher the added concentration, the higher the REs of the antibiotics (∼86% with 400 mg L-1). Therefore, all the assessed approaches were demonstrated to be very effective in improving the limited biotransformation of SMX and TMP in anaerobic reactors, ensuring REs comparable to those found in higher-cost wastewater treatment technologies, such as conventional activated sludge, membrane bioreactors, and hybrid processes.


Subject(s)
Anti-Bacterial Agents , Nitrates , Anaerobiosis , Bioreactors , Biotransformation , Oxidation-Reduction , Sewage
2.
Mycoses ; 54(5): e323-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20557461

ABSTRACT

The in vitro antifungal activity of ruthenium dithiocarbamate compounds (1-5) was investigated and assessed for its activity against seven different species of Aspergillus (Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus nomius, Aspergillus tamarii and Aspergillus terreus). Analysis of in vitro susceptibility was performed using broth microdilution assay following the Clinical and Laboratory Standards Institute guidelines for filamentous fungi. The cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Aspergillus clavatus and A. fumigatus were more susceptible species for complexes 1 and 2. Other complexes showed excellent minimum inhibitory concentration (4-64 µg ml(-1)) against most microorganisms. Complexes 1 and 2 are respectively 180- and 95-fold more active than the corresponding free ligands against A. clavatus and the complex 5 is 46-fold more active than free ligand against A. niger. Aspergillus niger was more susceptible to the action of the complexes 1 and 5 (16 µg ml(-1)). A low cytotoxic activity (IC(50) > 10(-6) mol l(-1) ) on normal mammalian cells (BHK-21) to the evaluated complexes was measured. Ruthenium complexes are promising antifungal agents against the development of novel effective drug against different species of Aspergillus; however, for A. nomius and A. terreus, they were not active in the highest concentration tested.


Subject(s)
Aspergillus/drug effects , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Thiocarbamates/chemistry , Thiocarbamates/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Cricetinae , Microbial Sensitivity Tests , Ruthenium Compounds/toxicity , Thiocarbamates/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...