Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Food Res Int ; 173(Pt 1): 113295, 2023 11.
Article in English | MEDLINE | ID: mdl-37803607

ABSTRACT

Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.


Subject(s)
Alkaloids , Berberine , Nanoparticles , Berberine/pharmacology , Berberine/chemistry , Acetylcholinesterase , Water
2.
Pharmaceutics ; 15(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986860

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle's surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.

3.
Bioprocess Biosyst Eng ; 45(4): 679-688, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35015119

ABSTRACT

Biopolishing is a textile process that uses cellulases to improve the pilling resistance of fabrics. Although the process improves the pilling resistance, softness and color brightness of fabrics, it causes a significant loss of tensile strength in treated fabrics. The present work studied the use of cellulase immobilized on kaolin by adsorption and covalent bonding in biopolishing to get around this problem. The cellulase immobilization has been reported as promising alternative to overcome the inconvenient of biopolishing, but it has been very poorly explored. The results showed that cellulase immobilized by both covalent bonding and adsorption methods provided to the knitted fabric similar or superior pilling resistance to free cellulase, but with greater tensile strength. Immobilization also allowed for efficient recovery and reuse of the enzyme. The present work is a relevant contribution to the literature, since, as far as we know, it is the first work that shows it is possible to minimize the loss of tensile strength and also reuse the immobilized enzyme, giving a better-quality product and also contribution to reducing the cost of the polishing step.


Subject(s)
Cellulase , Cellulases , Enzymes, Immobilized , Kaolin , Textiles
4.
J Nanosci Nanotechnol ; 21(11): 5493-5498, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33980359

ABSTRACT

Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.


Subject(s)
Nanoparticles , Serum Albumin, Bovine , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Polymethyl Methacrylate
5.
Bioprocess Biosyst Eng ; 44(8): 1627-1637, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33686500

ABSTRACT

In the current research, endoglucanase, one of the enzymes of the cellulolytic complex, was immobilized on kaolin by two different techniques, adsorption, and covalent bonding. A comparative study was conducted between free, adsorbed, and covalently immobilized endoglucanase. For the covalent bonding, the kaolin particles were functionalized with 3-aminopropyltriethoxysilane (APTES) and activated with glutaraldehyde. Immobilization by adsorption was performed using the kaolin without any treatment. Recovered activities after the endoglucanase immobilization by adsorption and covalent bonding were found to be 60 ± 2.5 and 65 ± 3.5%, respectively. The studies of optima pH and temperature, as well as thermal stability, showed that the catalytic characteristic of the enzyme was maintained after the immobilization by both adsorption and covalent bonding. Even after 8 cycles of use, the endoglucanase immobilized by the two techniques retained about 86% of its initial activity. The results showed that the adsorption was as effective as covalent bonding for the immobilization of endoglucanase on kaolin. However, the adsorption technique seems to have a greater potential for use in future studies, as it is simpler, cheaper, and faster than covalent immobilization. Therefore, in this work it was demonstrated that endoglucanases can be immobilized efficiently on kaolin through a very simple immobilization protocol, offering a promising strategy for performing repeated enzymatic hydrolysis reactions.


Subject(s)
Cellulase/chemistry , Enzymes, Immobilized/metabolism , Glutaral/chemistry , Kaolin/chemistry , Propylamines/chemistry , Silanes/chemistry , Adsorption , Biotechnology/methods , Catalysis , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Microscopy, Electron, Scanning , Particle Size , Temperature , X-Ray Diffraction
6.
Colloids Surf B Biointerfaces ; 197: 111434, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33166932

ABSTRACT

There has been considerable interest in the development of novel photosensitisers for photodynamic therapy (PDT). The use of liposomes as drug delivery systems containing simultaneously two or more drugs is an attractive idea to create a new platform for PDT application. Therefore, the aim of this study was to evaluate the synergistic effect of diethyldithiocarbamate (DETC) and zinc phthalocyanine (PDT) co-encapsulated in liposomes. The reverse-phase evaporation method resulted in the successful encapsulation of DETC and ZnPc in liposomes, with encapsulation efficiencies above 85 %, mean size of 308 nm, and zeta potential of - 36 mV. The co-encapsulation decreased the cytotoxic effects in mouse embryo fibroblast (NIH3T3) cells and inhibited damage to human erythrocytes compared to free DETC + ZnPc. In addition, both the free drugs and co-encapsulated ones promoted more pronounced phototoxic effects on human breast cancer cells (MDA-MB231) compared to treatment with ZnPc alone. This synergistic effect was determined by DETC-induced decreases in the antioxidant enzyme activity of superoxide dismutase (SOD) and glutathione (GSH).


Subject(s)
Breast Neoplasms , Organometallic Compounds , Photochemotherapy , Animals , Ditiocarb/pharmacology , Female , Humans , Indoles , Isoindoles , Liposomes , Mice , NIH 3T3 Cells , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Zinc Compounds
7.
Bioprocess Biosyst Eng ; 43(7): 1279-1286, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32189054

ABSTRACT

In this work, the free lipase Eversa® Transform 2.0 was used as a catalyst for enzymatic glycerolysis reaction in a solvent-free system. The product was evaluated by nuclear magnetic resonance (1H NMR) and showed high conversion related to hydroxyl groups. In sequence, the product of the glycerolysis was used as stabilizer and biopolyol for the synthesis of poly(urea-urethane) nanoparticles (PUU NPs) aqueous dispersion by the miniemulsion polymerization technique, without the use of a further surfactant in the system. Reactions resulted in stable dispersions of PUU NPs with an average diameter of 190 nm. After, the formation of the PUU NPs in the presence of concentrated lipase Eversa® Transform 2.0 was studied, aiming the lipase immobilization on the NP surface, and a stable enzymatic derivative with diameters around 231 nm was obtained. The hydrolytic enzymatic activity was determined using ρ-nitrophenyl palmitate (ρ-NPP) and the immobilization was confirmed by morphological analysis using transmission electron microscopy and fluorescence microscopy.


Subject(s)
Enzymes, Immobilized/immunology , Glycerol/chemistry , Lipase/metabolism , Polymers/chemistry , Polyurethanes/chemistry , Microscopy, Electron, Transmission , Sonication , Spectroscopy, Fourier Transform Infrared
8.
Appl Biochem Biotechnol ; 189(3): 745-759, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31111376

ABSTRACT

The total or partial substitution of fossil raw materials by biobased materials from renewable resources is one of the great challenges of our society. In this context, the reaction under mild condition as enzyme-catalyzed esterification was applied to investigate the esterification of the biobased 10-undecenoic acid with 2-hydroxyethyl methacrylate (HEMA) to obtain a new diene ester monomer. The environmentally friendly enzymatic reaction presented up to 100% of conversion; moreover, the production of possible by-products was minimized controlling reaction time and amount of enzyme. Furthermore, the presence of chloroform was evaluated during the enzymatic reactions and despite high conversions with higher enzyme concentration, the solvent-free system showed fast kinetics even with 1.13 U/g substrates. In addition, the commercial immobilized lipases Novozym 435 and NS 88011 could be applied for up to 10 cycles keeping conversions about 90%. The scale-up of the reaction was possible and a purification procedure was applied in order to isolate the diene ester monomer 2-(10-undecenoyloxy)ethyl methacrylate, preserving its double bonds, which could allow a potential use of this product in the synthesis of new renewable polymers through techniques as metathesis, thiol-ene, or free-radical polymerization.


Subject(s)
Esters/chemistry , Esters/chemical synthesis , Fungal Proteins/metabolism , Lipase/metabolism , Undecylenic Acids/chemistry , Biocatalysis , Chemistry Techniques, Synthetic , Esterification , Green Chemistry Technology , Kinetics , Methacrylates/chemistry
9.
Bioprocess Biosyst Eng ; 42(7): 1165-1173, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30927054

ABSTRACT

Endoglucanases are an enzyme of cellulases complex that has a great potential for many technological applications. One of the issues of its use concerns the recovery and reuse of this enzyme. Thus, in this study, the use of a surface-modified kaolin was evaluated to immobilize endoglucanase and evaluate the enzyme activity for its reuse. Kaolin was surface modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA). In addition, the properties of the immobilized enzyme were investigated and compared with those of the free enzyme. Results showed that the optimal pH value of endoglucanase was not affected by the immobilization process but showed a broader range of optimal temperature compared to free enzyme. Immobilization on kaolin allowed fast and easy cellulase recovery with a loss of enzyme activity of only 20% after eight cycles of use. These results indicate that kaolin is a promising substitute to the currently synthetic supports studied for cellulases immobilization with the advantage of being abundant in nature, resistant to microbial attack, chemically and mechanically stable.


Subject(s)
Cellulase/chemistry , Enzymes, Immobilized/chemistry , Kaolin/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Temperature
10.
Mater Sci Eng C Mater Biol Appl ; 97: 198-207, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30678904

ABSTRACT

Geranyl cinnamate is an ester derived from natural compounds that has excellent antibacterial properties but is susceptible to degradation in the presence of oxygen, light, heat, moisture and other aggressive agents, making it unstable. In this work, the encapsulation of geranyl cinnamate in polycaprolactone (PCL) nanoparticles and its antibacterial properties towards Escherichia coli and Staphylococcus aureus were investigated. PCL nanoparticles loaded with geranyl cinnamate were obtained by a miniemulsification/solvent evaporation technique resulting in spherical nanoparticles with an average diameter of 177.6 nm. TGA showed that geranyl cinnamate evaporation was retarded at 20 °C after encapsulation. Aqueous dispersions of geranyl cinnamate-loaded PCL nanoparticles stored at 4 °C presented good colloidal stability over 60 days. Minimum inhibitory concentration (MIC) tests showed that geranyl cinnamate was not released from the PCL nanoparticles in aqueous solution even after 72 h, requiring the use of a trigger (e.g. oil phase, lipase to degrade the polymer matrix) to release the active compound.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Nanoparticles/chemistry , Polyesters/chemistry , Calorimetry, Differential Scanning , Colloids , Drug Compounding/methods , Drug Stability , Escherichia coli/drug effects , Microbial Sensitivity Tests , Particle Size , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Temperature , Thermogravimetry
11.
Bioprocess Biosyst Eng ; 41(5): 585-591, 2018 May.
Article in English | MEDLINE | ID: mdl-29350294

ABSTRACT

Benzyl propionate is an aromatic ester that possesses a fruity odor and is usually found in nature in the composition of some fruits such as plums and melons. This work aimed for the benzyl propionate synthesis by esterification using a new immobilized enzyme preparation with low-cost material from Candida antarctica (NS 88011) and three commercial immobilized lipases (Novozym 435, Lipozyme TL-IM and Lipozyme RM-IM). Novozym 435 had the best performance even when the solvent tert-butanol was absent of the reaction medium. Results from a 22 factorial design showed that an increase in the enzyme amount led to a higher conversion, even when the temperature was kept at the low value. Currently, no research had synthesized successfully benzyl propionate via esterification mediated by lipases; and we reached an ester conversion of ~ 44% after 24 h indicating that it is a promising route for benzyl propionate biotechnological production.


Subject(s)
Candida/enzymology , Enzymes, Immobilized/chemistry , Esters/chemical synthesis , Fungal Proteins/chemistry , Lipase/chemistry , Biocatalysis , Esters/chemistry
12.
Appl Biochem Biotechnol ; 184(2): 659-672, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28836123

ABSTRACT

The demand for environmentally friendly products allied with the depletion of natural resources has increased the search for sustainable materials in chemical and pharmaceutical industries. Polyesters are among the most widely used biodegradable polymers in biomedical applications. In this work, aliphatic polyesters (from globalide and ω-pentadecalactone) were synthesized using a new commercial biocatalyst, the low-cost immobilized NS 88011 lipase (lipase B from Candida antarctica immobilized on a hydrophobic support). Results were compared with those obtained under the same conditions using a traditional, but more expensive, commercial biocatalyst, Novozym 435 (lipase B from C. antarctica immobilized on Lewatit VP OC). When NS 88011 was used in the polymerization of globalide, longer reaction times (240 min)-when compared to Novozym 435-were required to obtain high yields (80-90 wt%). However, higher molecular weights were achieved. When poly(ω-pentadecalactone) was synthesized, high yields and molecular weights (130,000 g mol-1) were obtained and the enzyme concentration showed strong influence on the polyester properties. This is the first report describing NS 88011 in polymer synthesis. The use of this cheaper enzymatic preparation can provide an alternative for polyester synthesis via enzymatic ring-opening polymerization.


Subject(s)
Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Polyesters , Catalysis , Polyesters/chemical synthesis , Polyesters/chemistry
13.
Food Funct ; 9(1): 440-449, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29226928

ABSTRACT

Curcumin is the main curcuminoid found in turmeric rhizomes and is a strong candidate to formulate foodstuff with specific properties. Among various bioactive properties of curcumin, its antiinflammatory activity is remarkable; on the other hand, its low water solubility leads to low absorption. Thus, new formulations need to be developed to improve its efficacy, and encapsulation is a promising alternative strategy in this regard. The objective of the present study was to obtain curcumin-loaded polyvinylpyrrolidone (PVP) nanoparticles and evaluate their acute in vivo antiinflammatory activity. Nanoparticles were obtained by complexation using the solid dispersion technique, and the characterization of nanoparticles showed that curcumin and PVP formed an amorphous solid solution. Encapsulated curcumin was colloidally stable in distilled water; this was attributed to the formation of hydrogen bonds between curcumin hydroxyl and PVP carbonyl groups. Rats were treated orally with single doses of curcumin and curcumin-loaded PVP nanoparticles, and antiinflammatory activity was evaluated by an experimental model of carrageenan-induced paw edema, myeloperoxidase (MPO) activity, and microcirculation in situ. Treatment with nanoparticles at 12.5 mg kg-1 significantly reduced the intensity of edema and MPO activity, whereas pure curcumin only presented a significant effect at 400 mg kg-1. Curcumin inhibited cell migration since rolling and adherent leukocytes were significantly reduced using nanoparticles at 50 mg kg-1 and curcumin at 400 mg kg-1. Compared to free curcumin, encapsulated curcumin was effective at lower doses; this might be due to the improved water affinity and colloidal stability of curcumin nanoparticles.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Curcumin/administration & dosage , Curcumin/chemistry , Edema/drug therapy , Animals , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Edema/immunology , Humans , Hydrogen Bonding , Male , Nanoparticles/chemistry , Particle Size , Rats , Rats, Wistar , Solubility
14.
Food Chem ; 230: 336-342, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28407919

ABSTRACT

Lutein is a carotenoid presenting known anti-inflammatory and antioxidant properties. Lutein-rich diets have been associated with neurological improvement as well as reduction of the risk of vision loss due to Age-Related Macular Degeneration (AMD). Micro and nanoencapsulation have demonstrated to be effective techniques in protecting lutein against degradation and also in improving its bioavailability. However, actual lutein concentration inside the capsules and encapsulation efficiency are key parameters that must be precisely known when designing in vitro and in vivo tests. In this work an analytical procedure was validated for the determination of the actual lutein content in zein nanoparticles using ultraviolet-visible spectroscopy. Method validation followed the International Conference on Harmonisation (ICH) guidelines which evaluate linearity, detection limit, quantification limit, accuracy and precision. The validated methodology was applied to characterize lutein-loaded nanoparticles.


Subject(s)
Lutein/chemistry , Nanoparticles/chemistry , Humans
15.
Colloids Surf B Biointerfaces ; 140: 317-323, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26764112

ABSTRACT

Encapsulation of hydrophilic compounds for drug delivery systems with high loading efficiency is not easily feasible and remains a challenge, mainly due to the leaking of the drug to the outer aqueous phase during nanoparticle production. Usually, encapsulation of hydrophilic drugs is achieved by using double emulsion or inverse miniemulsion systems that often require the use of organic solvents, which may generate toxicological issues arising from solvent residues. Herein, we present the preparation of solid lipid nanoparticles loaded with a hydrophilic compound by a novel organic solvent free double emulsion/melt dispersion technique. The main objective of this study was to investigate the influence of important process and formulation variables, such as lipid composition, surfactant type, sonication parameters and lipid solidification conditions over physicochemical characteristics of SLN dispersion. Particle size and dispersity, as well as dispersion stability were used as responses. SLN dispersions with average size ranging from 277 to 550 nm were obtained, showing stability for over 60 days at 4 °C depending on the chosen emulsifying system. Entrapment efficiency of fluorescent dyes used as model markers was assessed by fluorescence microscopy and UV-vis spectrophotometry and results suggest that the obtained lipid based nanoparticles could be potentially applied as a delivery system of water soluble drugs.


Subject(s)
Emulsions/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning , Drug Compounding/methods , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Particle Size , Pharmaceutical Preparations/administration & dosage , Solubility , Solvents/chemistry , Sonication , Surface-Active Agents/chemistry , Technology, Pharmaceutical/methods , Time Factors , Water/chemistry
16.
Mater Sci Eng C Mater Biol Appl ; 60: 458-466, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26706552

ABSTRACT

The goal of this work was to synthesize and characterize ZnPc loaded poly(methyl methacrylate) (PMMA) nanoparticles (NPs) by miniemulsion polymerization. Biocompatibility assays were performed in murine fibroblast (L929) cells and human peripheral blood lymphocytes (HPBL). Finally, photobiological assays were performed in two leukemic cells: chronic myeloid leukemia in blast crisis (K562) and acute lymphoblastic leukemia (Jurkat). ZnPc loaded PMMA NPs presented an average diameter of 97±2.5 nm with a low polydispersity index and negative surface charge. The encapsulation efficiency (EE %) of ZnPc PMMA NPs was 87%±2.12. The release of ZnPc from PMMA NPs was slow and sustained without the presence of burst effect, indicating homogeneous drug distribution in the polymeric matrix. NP biocompatibility was observed on the treatment of peripheral blood lymphocytes and L929 fibroblast cells. Phototoxicity assays showed that the ZnPc loaded in PMMA NPs was more phototoxic than ZnPc after activation with visible light at 675 nm, using a low light dose of 2J/cm(2) in both leukemic cells (Jurkat and K562). The results from fluorescence microscopy (EB/OA) and DNA fragmentation suggest that the ZnPc loaded PMMA NPs induced cell death by apoptosis. Based on presented results, our study suggests that PDT combined with the use of polymeric NPs, may be an excellent alternative for leukemia treatment.


Subject(s)
Indoles/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Photochemotherapy/methods , Polymethyl Methacrylate/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Humans , Mice , Polymerization
17.
Colloids Surf B Biointerfaces ; 135: 357-364, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26263221

ABSTRACT

The aim of this work was the simultaneous encapsulation of magnetic nanoparticles (MNPs) and zinc(II) phthalocyanine (ZnPc) in poly(methyl methacrylate) (PMMA) (MNPsZnPc-PMMA) nanoparticles (NPs) by miniemulsion polymerization and to evaluate the photobiological activity and/or hyperthermia (HPT) against human glioblastoma cells (U87MG). MNPsZnPc-PMMA NPs presented an average diameter of 104 ± 2.5 nm with a polydispersity index (PdI) of 0.14 ± 0.03 and negative surface charge - 47 ± 2.2 mV (pH 7.4 ± 0.1). The encapsulation efficiency (EE%) of ZnPc was 85.7% ± 1.30. The release of ZnPc from PMMA NPs was slow and sustained without the presence of burst effect, indicating a homogeneous distribution of the drug in the polymeric matrix. In the biological assay, MNPsZnPc-PMMA NPs showed considerable cytotoxic effect on U87MG cells only after activation with visible light at 675 nm (photodynamic therapy, PDT) or after application of an alternating magnetic field. The simultaneous encapsulation of MNPs and ZnPc in a drug delivery system with sustained release can be a new alternative for cancer treatment leading to significant tumor regression after minimum doses of heat dissipation and light.


Subject(s)
Indoles/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polymethyl Methacrylate/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Delayed-Action Preparations , Drug Compounding , Drug Delivery Systems , Emulsions , Humans , Isoindoles , Light , Magnetic Fields , Magnetite Nanoparticles , Nanoparticles/radiation effects , Polymerization , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...