Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 10(4)2018 Apr 18.
Article in English | MEDLINE | ID: mdl-30966487

ABSTRACT

Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which corresponds to 1 mmol·L-1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.

2.
Future Microbiol ; 10(2): 179-89, 2015.
Article in English | MEDLINE | ID: mdl-25689530

ABSTRACT

BACKGROUND: The seriousness to treat burn wounds infected with Pseudomonas aeruginosa led us to examine whether the effect of the carbapenem antibiotic imipenem is enhanced by hyperbaric oxygen (HBO). MATERIALS & METHODS: The effects of HBO (100% O2, 3 ATA, 5 h) in combination with imipenen on bacterial counts of six isolates of P. aeruginosa and bacterial ultrastructure were investigated. Infected macrophages were exposed to HBO (100% O2, 3 ATA, 90 min) and the production of reactive oxygen species monitored. RESULTS: HBO enhanced the effects of imipenen. HBO increased superoxide anion production by macrophages and likely kills bacteria by oxidative mechanisms. CONCLUSION: HBO in combination with imipenem can be used to kill P. aeruginosa in vitro and such treatment may be beneficial for the patients with injuries containing the P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hyperbaric Oxygenation , Imipenem/pharmacology , Macrophages/microbiology , Pseudomonas aeruginosa/physiology , Animals , Cells, Cultured , Drug Synergism , Macrophages/metabolism , Mice , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/ultrastructure , Reactive Oxygen Species/metabolism , Superoxides/metabolism
3.
PLoS One ; 8(4): e60209, 2013.
Article in English | MEDLINE | ID: mdl-23560078

ABSTRACT

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.


Subject(s)
Genes, Protozoan , Phylogeny , Protozoan Proteins/genetics , Symbiosis/genetics , Trypanosomatina/genetics , Bacteria/metabolism , Base Composition , Base Sequence , Biological Evolution , Leishmania major/genetics , Metabolic Networks and Pathways , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Protozoan Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA , Trypanosomatina/classification , Trypanosomatina/metabolism , Trypanosomatina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...