Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39231807

ABSTRACT

Yeast immobilization in beer fermentation has recently regained attention, due to the expansion of the craft beer market and the diversification of styles and flavors. The aim of this study was to evaluate the physiological differences between immobilized and free yeast cells with a focus on flavor-active compounds formation. Three strains of Saccharomyces spp. (SY025, SY067, SY001) were evaluated in both free and immobilized (using a cellulose-based support, referred as ImoYeast) forms during static batch fermentations of 12 °P malt extract. Immobilized cells showed higher glycerol (SY025, 40%; SY067, 53%; SY001, 19%) and biomass (SY025, 67%; SY067, 78%; SY001, 56%) yields than free cells. Conversely, free cells presented higher ethanol yield (SY025, 9%; SY067, 9%; SY001, 13%). Flavor-active compounds production exhibited significant alterations between immobilized and free cells systems, for all strains tested. Finally, a central composite design with varying initial biomass (X0) and substrate (S0) concentrations was conducted using strain SY025, which can be helpful to modulate the formation of one or more flavor-active compounds. In conclusion, yeast immobilization in the evaluated support resulted in flavor alterations that can be exploited to produce different beer styles.


Subject(s)
Beer , Cells, Immobilized , Fermentation , Flavoring Agents , Saccharomyces , Beer/microbiology , Beer/analysis , Saccharomyces/metabolism , Flavoring Agents/metabolism , Cells, Immobilized/metabolism , Biomass , Ethanol/metabolism , Glycerol/metabolism , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL