Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 19(2): 221-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21840238

ABSTRACT

A facile, efficient and environment-friendly protocol for the synthesis of 6-chloro-5-formyl-1,4-dihydropyridine derivatives has been developed by the convenient ultrasound-mediated reaction of 2(1H)pyridone derivatives with the Vilsmeier-Haack reagent. This method provides several advantages over current reaction methodologies including a simpler work-up procedure, shorter reaction times and higher yields.


Subject(s)
Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Chemistry Techniques, Synthetic/methods , Ultrasonics , Green Chemistry Technology , Models, Molecular , Molecular Conformation
2.
Eur J Pharm Sci ; 38(5): 489-97, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19782132

ABSTRACT

The interconversion of the ethanolate, hydrate and amorphous form of TMC114 ((3-[(4-amino-benzenesulfonyl)-isobutyl-amino]-1-benzyl-2-hydroxypropyl)-carbamic acid hexahydrofuro-[2,3-b]furan-3-yl ester) in open conditions was characterized. TMC114 hydrate and ethanolate form isostructural channel solvates. The crystal structure of TMC114 was obtained from single crystal X-ray diffraction, confirming that it is a channel solvate. Ethanol and water can exchange with one another. TMC114 ethanolate converts into TMC114 hydrate at moderate or high relative humidity (RH) at 25 degrees C, and it converts back into the ethanolate in ethanol atmosphere. The hydration level of the hydrate is determined by the environmental humidity. TMC114 hydrate collapses to the amorphous product when water is removed by drying at low RH or increasing temperature. TMC114 ethanolate becomes amorphous at elevated temperature in a dry environment below the desolvation temperature. Amorphous TMC114 obtained by dehydrating the hydrate during storage at room temperature/<5% RH, by increasing the temperature, or via desolvating the ethanolate by heating, converts into the hydrate at moderate or high RH at ambient conditions, and into TMC114 ethanolate in an ethanol atmosphere. Under ambient conditions, TMC114 ethanolate may convert into the hydrate, whereas the opposite will not occur under these conditions. The amorphous form, prepared by melting-quenching shows a limited water uptake. Whereas TMC114 ethanolate is stable in the commercialized drug product, special conditions can trigger its conversion.


Subject(s)
Chemistry, Pharmaceutical/methods , HIV Protease Inhibitors/chemistry , Sulfonamides/chemistry , Calorimetry, Differential Scanning/methods , Crystallization , Darunavir , Drug Stability , Drug Storage , Ethanol/chemistry , Humidity , Spectrophotometry, Infrared/methods , Stereoisomerism , Thermogravimetry/methods , X-Ray Diffraction/methods
3.
J Pharm Sci ; 98(1): 146-58, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18393299

ABSTRACT

Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs.


Subject(s)
Powders/chemistry , Ranitidine/chemistry , X-Ray Diffraction/methods , Crystallization/methods , Powders/analysis , Ranitidine/analysis , Stereoisomerism
4.
Eur J Pharm Biopharm ; 69(3): 1114-20, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18502629

ABSTRACT

The good compatibility between Itraconazole and polyvidone-vinylacetate 64 (PVPVA 64) was pointed out previously. However, the dissolution properties of these systems left room for improvement. Therefore polyethylene glycol 6000 (PEG 6000), known for its solubilizing and wetting properties, was added to the PVPVA 64 matrix. Physicochemical analysis showed that up to 10% of PEG 6000 could be mixed with PVPVA 64. Addition of 10%, 20% or 40% of Itraconazole rendered amorphous solid dispersions consisting of a ternary mixed phase and a PVPVA 64 rich amorphous phase. If the PEG 6000 fraction was elevated up to 25% of the carrier, the PEG 6000 crystallinity degree was around 73+/-0.6%. Up to 20% of Itraconazole could be molecularly dispersed in the 25/75 w/w polymer blend. An Itraconazole melting peak could be detected for the sample containing 40% of drug. Dissolution experiments showed that no benefit was obtained by adding PEG 6000 to the PVPVA 64 matrix for samples containing up to 20% of Itraconazole. The dissolution of the ternary dispersions with 40% of Itraconazole on the other hand showed improvement compared to binary Itraconazole/PVPVA 64 dispersions.


Subject(s)
Antifungal Agents/chemistry , Itraconazole/chemistry , Antifungal Agents/administration & dosage , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Pharmaceutical , Chemistry, Physical , Desiccation , Gas Chromatography-Mass Spectrometry , Itraconazole/administration & dosage , Polyethylene Glycols , Povidone/chemistry , Powders , Solubility , Temperature , Vinyl Compounds/chemistry , X-Ray Diffraction
5.
J Pharm Sci ; 97(6): 2110-20, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17847067

ABSTRACT

In order to reduce the crystallinity of PEG 6000, blends were prepared by spray drying and extrusion with the following polymers; PVP K25, PVPVA 64, and HPMC 2910 E5. The maximal reduction of crystallinity in PEG 6000 was obtained by co-spray drying with HPMC 2910 E5. In the next step the model drug Itraconazole was added to the blend and the resulting ternary solid dispersions were characterized. The results of this study show that the addition of PEG 6000 to the Itraconazole/HPMC 2910 E5 system leads to phase separation that in most cases gives rise to recrystallization of either PEG 6000 or Itraconazole. For all ternary dispersions containing 20% of Itraconazole the drug was highly amorphous and the dissolution was improved compared to the binary 20/80 w/w Itraconazole/HPMC 2910 E5 solid dispersion. For all ternary dispersions containing 40% of Itraconazole, the drug was partially crystalline and the dissolution was lower than the dissolution of the binary 40/60 w/w Itraconazole/HPMC 2910 E5 dispersion. These results show that provided Itraconazole is highly amorphous the addition of PEG 6000 to HPMC 2910 E5 leads to an increase in drug release.


Subject(s)
Antifungal Agents/chemistry , Drug Carriers , Itraconazole/chemistry , Methylcellulose/analogs & derivatives , Polyethylene Glycols/chemistry , Chemistry, Pharmaceutical , Crystallization , Drug Compounding , Hypromellose Derivatives , Kinetics , Methylcellulose/chemistry , Models, Chemical , Particle Size , Povidone/chemistry , Pyrrolidines/chemistry , Solubility , Technology, Pharmaceutical/methods , Vinyl Compounds/chemistry
6.
Int J Pharm ; 345(1-2): 95-100, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-17604923

ABSTRACT

In the present study the properties of binary solid dispersions made up of PVP VA64, Myrj 52 and indomethacin (IMC) are studied and characterized. The solid dispersions were prepared by dissolving the materials in dichloromethane, followed by solvent evaporation under reduced pressure at 55 degrees C in a rotavapor. Binary solid dispersions were characterized by standard and modulated temperature differential scanning calorimetry (MTDSC), thermogravimetry (TGA) and X-ray powder diffraction (XRPD). XRPD analysis showed that the initial IMC was in its gamma-form, and that it was transformed to the beta-form (reported to be a solvate) together with an amorphous fraction in the solid dispersions. A mixture of the beta-form and amorphous IMC was also obtained in the binary systems containing less than 30% polymer. IMC without adding polymer was subjected to the same experimental procedures as in the solid dispersions, and used as a model to characterize the solid-state transformations. The following order of transitions was observed: from the initial gamma-form, the beta-form was obtained together with an amorphous component, then the crystalline beta-form transforms into the alpha-form which melts and recrystallizes into the most stable gamma-form.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Indomethacin/chemistry , Polyethylene Glycols/chemistry , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Physical , Excipients , Indomethacin/administration & dosage , Isomerism , Surface-Active Agents/chemistry , X-Ray Diffraction
7.
J Pharm Sci ; 96(5): 1114-30, 2007 May.
Article in English | MEDLINE | ID: mdl-17455340

ABSTRACT

A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections.


Subject(s)
Alprazolam/chemistry , Anti-Anxiety Agents/chemistry , Calorimetry, Differential Scanning , Crystallization , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Molecular Structure , Phase Transition , Powder Diffraction , Technology, Pharmaceutical/methods , Temperature , Water/chemistry
8.
Eur J Pharm Sci ; 30(3-4): 288-94, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17204410

ABSTRACT

Kollicoat IR, a new pharmaceutical excipient developed as a coating polymer for instant release tablets, was evaluated as a carrier in solid dispersions of Itraconazole. The solid dispersions were prepared by hot stage extrusion. Modulated temperature differential scanning calorimetry and X-ray powder diffraction were used to evaluate the miscibility of the drug and the carrier. The pharmaceutical performance was evaluated by dissolution experiments, performed in simulated gastric fluid without pepsin (SGF(sp)). In the X-ray diffractograms no Itraconazole peaks were visible; the polymer on the other hand appeared to be semi-crystalline. Moreover, its crystallinity increased during the extrusion process due to exposure to heat and shear forces. Modulated temperature differential scanning calorimetry analysis showed that the drug and the polymer formed a two phase system. Separate clusters of glassy Itraconazole were present for drug loads of 40% or higher, indicating further phase separation. Dissolution measurements demonstrated a significantly increased dissolution rate for the solid dispersions compared to physical mixtures. Interestingly the physical mixture made up of glassy Itraconazole and Kollicoat IR (20/80, w/w) showed a dissolution rate and maximum that was much higher than that of the physical mixture made up of crystalline Itraconazole and that of pure glassy Itraconazole. The results of this study show that Kollicoat IR is a promising excipient for the formulation of solid dispersions of Itraconazole prepared by hot stage extrusion.


Subject(s)
Antifungal Agents/administration & dosage , Excipients/chemistry , Itraconazole/administration & dosage , Polyvinyls/chemistry , Antifungal Agents/chemistry , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry, Pharmaceutical , Chemistry, Physical , Chromatography, High Pressure Liquid , Drug Compounding , Itraconazole/chemistry , Solubility , Spectrophotometry, Ultraviolet , Tablets , Temperature , X-Ray Diffraction
9.
J Pharm Sci ; 95(10): 2123-36, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16892212

ABSTRACT

The crystal structure of carnidazole form II, O-methyl [2-(2-methyl-5-nitro-1H-imidazole-1-yl)ethyl]thiocarbamate, has been determined using synchrotron X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined by the Rietveld method. For structure solution, 12 degrees of freedom were defined: one motion group and six torsions. Form II crystallizes in space group P2(1)/n, Z=4, with unit cell parameters after Rietveld refinement: a=13.915(4), b=8.095(2), c=10.649(3) A, beta=110.83(1) degrees, and V=1121.1(5) A3. The two polymorphic forms, as well as the hydrate, crystallize in the monoclinic space group P2(1)/n having four molecules in the cell. In form II, the molecules are held together by forming two infinite zig-zag chains via hydrogen bonds of the type N--H...N, the same pattern as in form I. A conformational study of carnidazole, at semiempirical PM3 level, was performed using stochastic approaches based on modification of the flexible torsion angles. The values of the torsion angles for the molecules of the two polymorphic forms and the hydrate of carnidazole are compared to those obtained from the conformational search. Form I and form II are enantiotropic polymorphic pairs this agrees with the fact that the two forms are conformational polymorphs.


Subject(s)
Nitroimidazoles/chemistry , Calorimetry, Differential Scanning , Crystallization , Models, Molecular , Molecular Conformation , Synchrotrons , Water/chemistry , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...