Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 13(5): 397-405, 2000 May.
Article in English | MEDLINE | ID: mdl-10813657

ABSTRACT

trans,trans-2,4-Decadienal (DDE) is a widespread alpha, beta-unsaturated aldehyde found, for example, in food, water, and environmental pollutants. DDE is also endogenously generated as a breakdown product of lipid peroxidation in cell membranes. In the work presented here, the reaction of DDE with 2'-deoxyadenosine (dAdo) was investigated in an effort to assess its possible DNA damage potential. Besides 1,N(6)-etheno-2'-deoxyadenosine and two products, namely, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2,3-octanetriol (adduct I) and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2-heptanediol (adduct II), previously described by our group, two novel etheno adducts were identified. Thus, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1-hexanol (adduct III) and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-2,3-epoxy-1-octanol (adduct IV) were isolated by reverse-phase high-performance liquid chromatography and characterized on the basis of extensive spectroscopic measurements. The formation of the adducts is likely to involve initial DDE oxidation followed by generation of reactive intermediates such as diepoxides, epoxides, and/or hydroperoxides. The subsequent reaction of the latter oxidation products with dAdo will give rise to the four described adducts. We also demonstrated here that upon oxidation, DDE reacts with calf thymus DNA, producing the four dAdo adducts. Interestingly, two of them are the expected products arising from the reaction of dAdo with 4-hydroxy-trans-2-nonenal (HNE) and trans-2-octenal, two other important breakdown lipid peroxidation products. The reactivity of DDE with DNA is lower than that of the latter aldehydes. However, DDE produced a wider variety of adducts. The characterization of the different DNA-etheno adducts and the determination of the mechanism of formation are of great importance for a better understanding of the deleterious biological effects associated with this class of compounds.


Subject(s)
DNA Adducts/chemistry , Deoxyadenosines/chemistry , Lipid Peroxidation , Aldehydes/chemistry , Animals , Cattle , Chromatography, High Pressure Liquid , DNA/chemistry , Environmental Pollution/analysis , Mass Spectrometry , Molecular Structure
2.
Chem Res Toxicol ; 11(9): 1042-7, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9760278

ABSTRACT

trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1, N6-etheno-2'-deoxyadenosine (epsilondAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2, 1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.


Subject(s)
Aldehydes/chemistry , Deoxyadenosines/chemistry , Animals , Cattle , DNA/chemistry , DNA Adducts/chemistry , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...