Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 84(1): 98-102, 2019 01.
Article in English | MEDLINE | ID: mdl-31950734

ABSTRACT

Four different hybrid compounds have been efficiently synthesized by conjugation of deacetylthiocolchicine with pironetin-inspired derivatives. The modest bioactivity and the apparent absence of interaction with α-tubulin is explained by a posteriori in silico investigation, which suggests a relevant distance between the thiocolchicine binding site and the proper pocket on the α-tubulin. The modest activity on resistant cells suggested that the lipophilic nature of the linker used renders the resulting compounds better substrates for p-Gp efflux pumps. The study better clarifies the design of bivalent compounds that target hetero tubulin/microtubules.


Subject(s)
Antineoplastic Agents/chemical synthesis , Colchicine/analogs & derivatives , Tubulin/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemistry , Colchicine/metabolism , Humans , Ligands , Molecular Dynamics Simulation , Stereoisomerism , Tubulin/chemistry
2.
Eur J Med Chem ; 162: 290-320, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30448418

ABSTRACT

Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.


Subject(s)
Antineoplastic Agents/chemistry , Oxazepines/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Resistance, Multiple/drug effects , Drug Screening Assays, Antitumor , Humans , Microtubules/drug effects , Molecular Structure , Oxazepines/therapeutic use , Structure-Activity Relationship
3.
Int J Mol Sci ; 18(7)2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28640209

ABSTRACT

Quinolin-6-yloxyacetamides (QAs) are a chemical class of tubulin polymerization inhibitors that were initially identified as fungicides. Here, we report that QAs are potent anti-proliferative agents against human cancer cells including ones that are drug-resistant. QAs act by disrupting the microtubule cytoskeleton and by causing severe mitotic defects. We further demonstrate that QAs inhibit tubulin polymerization in vitro. The high resolution crystal structure of the tubulin-QA complex revealed that QAs bind to the colchicine site on tubulin, which is targeted by microtubule-destabilizing agents such as colchicine and nocodazole. Together, our data establish QAs as colchicine-site ligands and explain the molecular mechanism of microtubule destabilization by this class of compounds. They further extend our structural knowledge on antitubulin agents and thus should aid in the development of new strategies for the rational design of ligands against multidrug-resistant cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Quinolines/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Animals , Antineoplastic Agents/chemistry , Cattle , Cell Line, Tumor , Colchicine/metabolism , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Quinolines/chemistry , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...