Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(7): e0200273, 2018.
Article in English | MEDLINE | ID: mdl-29990330

ABSTRACT

Sperm samples used on fertilization strongly influence the in vitro production (IVP) rates. However, sperm traits behind this effect are not stated consistently until now. This study aimed to evaluate the isolated and combined effect of some sperm traits (MB: total motility before Percoll® gradient, MA: total motility after Percoll® gradient, AI: acrosome integrity, MI: membrane integrity, MP: mitochondrial membrane potential, and CR: chromatin resistance) on IVP rates. This is the first study focusing on the isolated effect of distinct traits. For this purpose, the experiment was divided in three steps. In first step, to study behavior of traits sperm samples (n = 63 batches) were analyzed and ranked based on each trait. In second step, samples ranked were selected from target ranks regions and allocated in groups of four to five batches, creating Higher and Lower groups, according to two different approaches. One aimed to form groups that differed to all sperm traits simultaneously (effect of combined traits). The other aimed to form groups that differed only to a single sperm trait while no differences were observed for the remaining traits (effect of each isolated trait). In third step, for each group successfully formed in step 2, sperm samples were individually and prospectively used for IVP. Cleavage, embryo development and blastocyst rates were recorded and compared between Higher and Lower of respective trait groups. Surprisingly, evaluation of isolated effects revealed that lower levels of MB, AI and MP resulted in higher embryo development and blastocyst rates (p<0.05), which was not observed on cleavage rate. We conclude that sperm traits strongly influence embryo development after in vitro fertilization (IVF), affecting the zygote competence to achieve blastocyst stage. Individually, levels of MB, AI or MP could be some of the key traits that may define IVP efficiency on current systems of embryo production.


Subject(s)
Cattle/embryology , Spermatozoa/physiology , Acrosome/physiology , Animals , Blastocyst/physiology , Chromatin/metabolism , Cleavage Stage, Ovum/physiology , In Vitro Techniques , Male , Membrane Potential, Mitochondrial , Povidone , Silicon Dioxide , Sperm Motility , Zygote/physiology
2.
Oxid Med Cell Longev ; 2018: 5413056, 2018.
Article in English | MEDLINE | ID: mdl-29765499

ABSTRACT

Sperm DNA fragmentation is considered one of the main causes of male infertility. The most accepted causes of sperm DNA damage are deleterious actions of reactive oxygen species (ROS), defects in protamination, and apoptosis. Ram sperm are highly prone to those damages due to the high susceptibility to ROS and to oxidative stress caused by heat stress. We aimed to evaluate the effects of heat stress on the chromatin of ejaculated and epididymal sperm and the activation of apoptotic pathways in different cell types in ram testis. We observed higher percentages of ejaculated sperm with increased chromatin fragmentation in the heat stress group; a fact that was unexpectedly not observed in epididymal sperm. Heat stress group presented a higher percentage of spermatozoa with DNA fragmentation and increased number of mRNA copies of transitional protein 1. Epididymal sperm presented greater gene expression of protamine 1 on the 30th day of the spermatic cycle; however, no differences in protamine protein levels were observed in ejaculated sperm and testis. Localization of proapoptotic protein BAX or BCL2 in testis was not different. In conclusion, testicular heat stress increases ram sperm DNA fragmentation without changes in protamination and apoptotic patterns.


Subject(s)
DNA/drug effects , Sperm Motility/drug effects , Spermatozoa/physiology , Testis/physiology , Animals , Male , Protamines
3.
Oxid Med Cell Longev ; 2016: 1687657, 2016.
Article in English | MEDLINE | ID: mdl-26881013

ABSTRACT

Higher temperatures lead to an increase of testicular metabolism that results in spermatic damage. Oxidative stress is the main factor responsible for testicular damage caused by heat stress. The aim of this study was to evaluate lasting effects of heat stress on ejaculated sperm and immediate or long-term effects of heat stress on epididymal sperm. We observed decrease in motility and mass motility of ejaculated sperm, as well as an increase in the percentages of sperm showing major and minor defects, damaged plasma and acrosome membranes, and a decrease in the percentage of sperm with high mitochondrial membrane potential in the treated group until one spermatic cycle. An increased enzymatic activity of glutathione peroxidase and an increase of stressed cells were observed in ejaculated sperm of the treated group. A decrease in the percentage of epididymal sperm with high mitochondrial membrane potential was observed in the treated group. However, when comparing immediate and long-term effects, we observed an increase in the percentage of sperm with low mitochondrial membrane potential. In conclusion, testicular heat stress induced oxidative stress that led to rescuable alterations after one spermatic cycle in ejaculated sperm and also after 30 days in epididymal sperm.


Subject(s)
Epididymis/pathology , Oxidative Stress , Semen/metabolism , Spermatozoa/physiology , Acrosome Reaction , Animals , Antioxidants/metabolism , Flow Cytometry , Free Radicals , Glutathione Peroxidase/metabolism , Hot Temperature , Lipid Peroxidation , Male , Membrane Potential, Mitochondrial , Sheep , Sperm Motility , Temperature , Thiobarbituric Acid Reactive Substances/metabolism
4.
Reproduction ; 151(4): 379-90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26811546

ABSTRACT

Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm.


Subject(s)
Antioxidants/metabolism , DNA Fragmentation , Lipid Peroxidation , Semen Analysis/methods , Semen/metabolism , Spermatozoa/metabolism , Animals , Apoptosis , Blotting, Western , Cells, Cultured , Male , Membrane Potential, Mitochondrial , Oxidative Stress , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sheep, Domestic , Spermatozoa/chemistry , Thiobarbituric Acid Reactive Substances/metabolism
5.
Reprod Biomed Online ; 31(4): 577-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26206284

ABSTRACT

This study proposed a quantitative evaluation of oxidative status (OS) in bovine embryos. Sixteen-cell stage embryos, cultured under 5% O2, were treated with oxidative stress inducer menadione (0, 1, 2.5 and 5 µmol/l) for 24 h. Blastocyst rate (BLR) was recorded and expanded blastocysts were stained with CellROX®Green (CRG; OS evaluation) and evaluated under epifluorescence microscopy (ratio of pixel/blastomere). A significant effect of menadione was observed for BLR (P = 0.0039), number of blastomeres/embryo (P < 0.0001) and OS (P < 0.001). Strong negative correlations were found between BLR and the number of blastomeres with OS evaluation, demonstrating the efficacy of this analysis to evaluate OS levels of IVF bovine embryos.


Subject(s)
Embryo, Mammalian/metabolism , Oxidative Stress , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Blastomeres/cytology , Blastomeres/drug effects , Blastomeres/metabolism , Cattle , Embryo Culture Techniques , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Embryonic Development/physiology , Female , Fertilization in Vitro/veterinary , Microscopy, Fluorescence , Oxidative Stress/drug effects , Vitamin K 3/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...