Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 187(3): 608-21, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20553394

ABSTRACT

*The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.


Subject(s)
Carbon/metabolism , Droughts , Trees/metabolism , Bacteria/metabolism , Brazil , Carbon Dioxide/metabolism , Cell Respiration , Ecosystem , Soil , Time Factors
2.
New Phytol ; 174(3): 697-703, 2007.
Article in English | MEDLINE | ID: mdl-17447923

ABSTRACT

This study evaluates a novel method for extracting roots from soil samples and applies it to estimate standing crop root mass (+/- confidence intervals) in an eastern Amazon rainforest. Roots were manually extracted from soil cores over a period of 40 min, which was split into 10 min time intervals. The pattern of cumulative extraction over time was used to predict root extraction beyond 40 min. A maximum-likelihood approach was used to calculate confidence intervals. The temporal prediction method added 21-32% to initial estimates of standing crop root mass. According to predictions, complete manual root extraction from 18 samples would have taken c. 239 h, compared with 12 h using the prediction method. Uncertainties (percentage difference between mean, and 10th and 90th percentiles) introduced by the prediction method were small (12-15%), compared with uncertainties caused by spatial variation in root mass (72-191%, for nine samples per plot surveyed). This method provides a way of increasing the number of root samples processed per unit time, without compromising measurement accuracy.


Subject(s)
Plant Roots/metabolism , Plants/metabolism , Soil , Specimen Handling/methods , Likelihood Functions , Research Design , South America , Trees
SELECTION OF CITATIONS
SEARCH DETAIL