Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1078922, 2023.
Article in English | MEDLINE | ID: mdl-36969257

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , COVID-19/metabolism , Interleukin-10/metabolism , Granzymes/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear , Perforin/metabolism , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2
2.
Planta Med ; 88(5): 356-366, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34344056

ABSTRACT

Hypertension is a chronic disease and a global health problem. Due to its high prevalence, it constitutes the most important risk factor for cardiovascular disease. Fruit peels from Passiflora edulis fo. flavicarpa are rich in bioactive natural compounds that may have action in hypertension. This study aimed to perform a fingerprinting analysis of Passiflora edulis fruit peel extract and evaluate its actions on the cardiovascular system in an in vivo model. The extract was obtained from the dried and powdered fruit peels of Passiflora edulis. Glycoside flavonoids were identified in the extract by HPLC-ESI-MSn. The extract showed a significant hypotensive effect after 28 days of treatment and improved vascular function in the mesenteric artery. This effect was verified by decreased vascular hypercontractility and increased vasorelaxant in response to sodium nitroprusside and acetylcholine. There was also a decrease in endothelial dysfunction, which can be attributed to nitric oxide's increased bioavailability. Thus, we hypothesize that all these effects contributed to a reduction in peripheral vascular resistance, leading to a significant hypotensive effect. These results are novel for fruit peels from P. edulis. Also, there was a decrease in plasma and cardiac malondialdehyde levels and an increase in glutathione, suggesting a reduction in oxidative stress, as well as an increase of anti-inflammatory cytokines such as IL-10 in the plasma. This study demonstrated that the extract can be a new source of raw material to be applied as food or medicine adjuvant for treating hypertension.


Subject(s)
Cardiovascular System , Hypertension , Passiflora , Animals , Chromatography, High Pressure Liquid , Fruit/chemistry , Hypertension/drug therapy , Passiflora/chemistry , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Spectrum Analysis
3.
Cytokine ; 146: 155651, 2021 10.
Article in English | MEDLINE | ID: mdl-34325119

ABSTRACT

Zika virus (ZIKV), alongside Dengue virus (DENV), Chikungunya virus (CHIKV), and Yellow Fever Virus (YFV) are prevalent arboviruses in the Americas. Each of these infections is associated with the development of associated disease immunopathology. Immunopathological processes are an outcome of counter-balancing impacts between effector and regulatory immune mechanisms. In this context, regulatory T cells (Tregs) are key in modulating the immune response and, therefore, in tissue damage control. However, to date, Treg phenotypes and mechanisms during acute infection of the ZIKV in humans have not been fully investigated. The main aim of this work was to characterize Tregs and their immunological profile related to cytokine production and molecules that are capable of controlling the exacerbated inflammatory profile in acute Zika infected patients. Using whole blood analyses of infected patients, an ex vivo phenotypical characterization of Tregs, circulating during acute Zika virus infection, was conducted by flow cytometry. We found that though there are no differences in absolute Treg frequency between infected and healthy control groups. However, pro-inflammatory cytokine up-regulation such as IFN-γ and LAP was observed in the acute disease. Furthermore, acute ZIKV patients expressed increased levels of CD39/CD73, perforin/granzyme B, PD-1, and CTLA-4, all markers involved in mechanisms used by Tregs to attempt to control strong inflammatory responses. Thus, the data indicates a potential contribution of Tregs during the inflammatory ZIKV infection response.


Subject(s)
T-Lymphocytes, Regulatory/immunology , Zika Virus Infection/immunology , Adult , Case-Control Studies , Cell Death , Cytokines/biosynthesis , Female , Humans , Male , Phenotype , T-Lymphocytes, Regulatory/metabolism , Zika Virus/immunology , Zika Virus Infection/pathology , Zika Virus Infection/virology
4.
PLoS One ; 16(4): e0249487, 2021.
Article in English | MEDLINE | ID: mdl-33857158

ABSTRACT

Erectile dysfunction (ED) is defined as the inability to achieve and/or maintain penile erection sufficient for satisfactory sexual relations, and aging is one of the main risk factors involved. The D-(+)-Galactose aging model is a consolidated methodology for studies of cardiovascular aging; however, its potential for use with ED remain unexplored. The present study proposed to characterize a new experimental model for ED, using the D-(+)-Galactose aging model. For the experiments, the animals were randomly divided into three groups receiving: vehicle (CTL), D-galactose 150 mg/kg (DGAL), and D-(+)-galactose 150 mg/Kg + sildenafil 1.5 mg/Kg (DGAL+SD1.5) being administered daily for a period of eight weeks. All of the experimental protocols were previously approved by the Ethics Committee on the Use of Animals at the Federal University of Paraíba n° 9706070319. During the treatment, we analyzed physical, molecular, and physiological aspects related to the aging process and implicated in the development of ED. Our findings demonstrate for the first time that D-(+)-Galactose-induced aging represents a suitable experimental model for ED assessment. This was evidenced by an observed hyper-contractility in corpora cavernosa, significant endothelial dysfunction, increased ROS levels, an increase in cavernous tissue senescence, and the loss of essential penile erectile components.


Subject(s)
Aging , Erectile Dysfunction/etiology , Galactose/adverse effects , Aging/drug effects , Animals , Disease Models, Animal , Electric Stimulation , Erectile Dysfunction/metabolism , Galactose/pharmacology , Male , Penile Erection , Penis/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sildenafil Citrate/adverse effects , Sildenafil Citrate/pharmacology
5.
Parasitol Res ; 118(10): 3067-3076, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392413

ABSTRACT

This study is a report on the anti-Leishmania activity of Morita-Baylis-Hillman (MBH) homodimers adducts against the promastigote and axenic amastigote forms of Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis and on the cytotoxicity of these adducts to human blood cells. Both studied homodimers, MBH 1 and MBH 2, showed activity against the promastigote forms of L. infantum and L. amazonensis, which are responsible for visceral and cutaneous leishmaniasis, respectively. Additionally, the homodimers presented biological activity against the axenic amastigote forms of these two Leishmania species. The adducts exhibited no hemolytic activity to human peripheral blood mononuclear cells or erythrocytes at the tested concentrations and achieved higher selectivity indices than amphotericin B. Evaluation of cell death by apoptosis revealed that the homodimers had better apoptosis/necrosis profiles than amphotericin B in the promastigote forms of both L. infantum and L. amazonensis. In conclusion, these Morita-Baylis-Hillman adducts had anti-Leishmania activity in an in vitro model and may thus be promising molecules in the search for new drugs to treat leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Amphotericin B/pharmacology , Animals , Antiprotozoal Agents/chemistry , Apoptosis/drug effects , Dimerization , Drug Evaluation, Preclinical , Hemolysis , Humans , Leishmania/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...