Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Neurobiol Stress ; 6: 104-112, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28229113

ABSTRACT

Understanding the role of the social environment in the development of stress related diseases requires a more fundamental understanding of stress. Stress includes not only the stimulus and the response but also the individual appraisal of the situation. The social environment is not only essential for survival it is at the same time an important source of stressors. This review discusses the social stress concept, how it has been studied in rodents in the course of time and some more recent insights into the appraisal process. In addition to the factors controllability and predictability, outcome expectancy and feedback of the victim's own actions during the social stress are suggested to be important factors in the development of stress related disease. It is hypothesized that individual differences in the way in which these factors are used in the appraisal of everyday life situations may explain individual vulnerability.

2.
Physiol Behav ; 146: 111-27, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26066717

ABSTRACT

Experimental studies aimed at understanding the neurobiology of aggression started in the early 20th century, and by employing increasingly sophisticated tools of functional neuroanatomy (i.e., from electric/chemical lesion and stimulation techniques to neurochemical mapping and manipulations) have provided the important framework for the functional brain circuit organization of aggressive behaviors. Recently, newly emerging technologies for mapping,measuring and manipulating neural circuitry at the level of molecular and genetically defined neuronal subtypes promise to further delineate the precise neural microcircuits mediating the initiation and termination of aggressive behavior, and characterize its dynamic neuromolecular functioning. This paper will review some of the behavioral, neuroanatomical and neurochemical evidence in support of a modular view of the neurobiology of offensive aggressive behavior. Although aggressive behavior likely arises from a specific concerted activity within a distributed neural network across multiple brain regions, emerging opto- and pharmacogenetic neuronal manipulation studies make it clear that manipulation of molecularly-defined neurons within a single node of this global interconnected network seems to be both necessary and sufficient to evoke aggressive attacks. However, the evidence so far also indicates that in addition to behavior-specific neurons there are neuronal systems that should be considered as more general behavioral control modules. The answer to the question of behavioral specificity of brain structures at the level of individual neurons requires a change of the traditional experimental setup. Studies using c-fos expression mapping usually compare the activation patterns induced by for example aggression with a home cage control. However, to reveal the behavioral specificity of this neuronal activation pattern, a comparison with other social and non-social related behaviors such as mating, defensive burying or running might be more appropriate. In addition, the correlations between aggressive behavior and other behaviors in different environmental contexts might give an indication of these more general behavioral control functions. Elucidating how neural circuits that modulate social-aggressive behavior also mediate other complex emotional behaviors or states will lead to a better understanding of the molecular mechanisms by which social deficits are expressed in various neuropsychiatric disorders. This likely will lead to more efficacious pharmacological or circuit-based therapeutics to curb excessive/abnormal aggressive behavior and improve social function.


Subject(s)
Aggression/physiology , Neural Pathways/physiology , Neurobiology , Animals , Humans , Social Behavior
3.
J Bone Joint Surg Br ; 93(6): 769-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21586775

ABSTRACT

We examined the morphology of mammalian hips asking whether evolution can explain the morphology of impingement in human hips. We describe two stereotypical mammalian hips, coxa recta and coxa rotunda. Coxa recta is characterised by a straight or aspherical section on the femoral head or head-neck junction. It is a sturdy hip seen mostly in runners and jumpers. Coxa rotunda has a round femoral head with ample head-neck offset, and is seen mostly in climbers and swimmers. Hominid evolution offers an explanation for the variants in hip morphology associated with impingement. The evolutionary conflict between upright gait and the birth of a large-brained fetus is expressed in the female pelvis and hip, and can explain pincer impingement in a coxa profunda. In the male hip, evolution can explain cam impingement in coxa recta as an adaptation for running.


Subject(s)
Biological Evolution , Femoracetabular Impingement/pathology , Hip Joint/pathology , Mammals/anatomy & histology , Animals , Body Weight/physiology , Brain/anatomy & histology , Female , Femoracetabular Impingement/genetics , Gait/genetics , Gait/physiology , Hip Joint/anatomy & histology , Hip Joint/physiology , Humans , Male , Mammals/genetics , Mammals/physiology , Parturition/physiology , Pelvic Bones/anatomy & histology , Pregnancy , Species Specificity
4.
Physiol Behav ; 103(3-4): 412-20, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21406199

ABSTRACT

Stress research has been dominated by a circular type of reasoning that occurrence of a stress response is bad. Consequently, the stimulus is often interpreted as stressful in terms of aversiveness involving uncontrollability and unpredictability, which may have maladaptive and pathological consequences. However, the hypothalamic-pituitary-adrenal (HPA) axis and sympathico-adrenomedullary (SAM) system are not only activated in response of the organism to challenges, but also prepare and support the body for behavior. Therefore, a considerable part of the physiological and hormonal responses to a certain situation can be a direct reflection of the metabolic requirements for the normal ongoing behavioral activity, rather than of the stressful nature. In order to clarify this, behavioral, physiological, hormonal and electroencephalographic (EEG) responses to novel cage exposure were studied in male Sprague-Dawley rats. Forced confrontation with a novel cage has been interpreted as a psychological and aversive stressor. However, this interpretation is simply based on the occurrence of a stress response. This study aimed at detailed analysis of the time course of the novelty-induced responses. Different parameters were measured simultaneously in freely moving rats, which allowed correlational comparisons. Hereto, radio telemetry using a small implantable transmitter combined with permanent catheters and an automated blood sampling system was used. A camera placed above the cage allowed behavioral observations. The results show that novelty exposure induced significant increases in locomotor activity, heart rate, blood pressure and plasma corticosterone together with a complete lack of sleep as compared to the undisturbed control situation. The latency to reach significance and the duration of responses varied across parameters but all had recovered within 30min after termination of novelty. The behavioral activity (locomotor activity and EEG wakefulness duration) response pattern was significantly correlated with that of heart rate, blood pressure and plasma corticosterone. Behavioral observations showed mainly explorative behavior in response to novelty. Therefore, the present results indicate that the novelty-induced physiological and hormonal responses are closely related to the ongoing, mainly explorative behavioral activity induced by novelty. An interpretation in terms of metabolic support of ongoing behavior seems to be more appropriate than the frequently used stress interpretation. The present study also emphasizes the added value of simultaneous assessment of behavioral, physiological and hormonal parameters under controlled, non-confounding conditions.


Subject(s)
Corticosterone/blood , Exploratory Behavior/physiology , Stress, Psychological/blood , Stress, Psychological/physiopathology , Analysis of Variance , Animals , Behavior, Animal , Blood Pressure/physiology , Circadian Rhythm/physiology , Cross-Over Studies , Electroencephalography , Heart Rate/physiology , Male , Motor Activity/physiology , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Telemetry/methods , Time Factors
5.
Neurosci Biobehav Rev ; 35(5): 1291-301, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21316391

ABSTRACT

With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely aversive conditions, is in our view inappropriate. Review of the literature reveals that the physiological 'stress' response to appetitive, rewarding stimuli that are often not considered to be stressors can be as large as the response to negative stimuli. Analysis of the physiological response during exercise supports the view that the magnitude of the neuroendocrine response reflects the metabolic and physiological demands required for behavioural activity. We propose that the term 'stress' should be restricted to conditions where an environmental demand exceeds the natural regulatory capacity of an organism, in particular situations that include unpredictability and uncontrollability. Physiologically, stress seems to be characterized by either the absence of an anticipatory response (unpredictable) or a reduced recovery (uncontrollable) of the neuroendocrine reaction. The consequences of this restricted definition for stress research and the interpretation of results in terms of the adaptive and/or maladaptive nature of the response are discussed.


Subject(s)
Reward , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Adaptation, Physiological/physiology , Animals , Corticosterone/blood , Humans , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Predictive Value of Tests , Stress, Psychological/blood
6.
Front Neuroendocrinol ; 31(3): 307-21, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20382177

ABSTRACT

Individual variation in behavior and physiology is a widespread and ecologically functional phenomenon in nature in virtually all vertebrate species. Due to domestication of laboratory animals, studies may suffer from a strong selection bias. This paper summarizes behavioral, neuroendocrine and neurobiological studies using the natural individual variation in rats and mice. Individual behavioral characteristics appear to be consistent over time and across situations. The individual variation has at least two dimensions in which the quality of the response to a challenging condition (coping style) is independent from the quantity of that response (stress reactivity). The neurobiology reveals important differences in the homeostatic control of the serotonergic neuron and the neuropeptides vasopressin and oxytocin in relation to coping style. It is argued that a careful exploitation of the broad natural and biologically functional individual variation in behavior and physiology may help in developing better animal models for understanding individual disease vulnerability.


Subject(s)
Adaptation, Psychological/physiology , Individuality , Neurosecretory Systems/physiology , Animals , Humans , Mice , Models, Biological , Neurobiology , Neuroendocrinology , Rats
7.
Physiol Behav ; 95(4): 591-8, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-18817794

ABSTRACT

Aggressiveness is often considered a life-long, persistent personality trait and is therefore expected to have a consistent neurobiological basis. Recent meta-analyses on physiological correlates of aggression and violence suggest that certain aggression-related psychopathologies are associated with low functioning of the hypothalamo-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We tested this hypothesis in mice selected for high and low aggressiveness by measuring baseline plasma corticosterone levels and, via radiotelemetry, heart rate and core body temperature. The radiotelemetric recordings were made for 48 h under baseline undisturbed conditions and for 90 min after a handling stressor. Consistent with the hypoarousal hypothesis of violence, we found lower resting heart rates in two out of the three highly aggressive selection lines. In contrast, body temperature during the active phase, as another ANS-regulated physiological parameter, was higher in two out of three highly aggressive lines. The handling-induced tachycardiac and hyperthermic responses were similar across the six mouse lines except for the most docile and obese line, which showed a blunted reactivity. Besides significant differences between strains, no differences in plasma corticosterone levels were found between the high- and low-aggressive phenotypes. These results are discussed in relation to the different types of aggression (normal versus pathological) exhibited by the three highly aggressive lines. We conclude that while high trait-like aggressiveness is generally associated with a higher active phase core body temperature, only animals that express pathological forms of aggression are characterized by a low resting heart rate.


Subject(s)
Aggression/physiology , Body Temperature/physiology , Corticosterone/blood , Heart Rate/physiology , Aggression/psychology , Analysis of Variance , Animals , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Mice, Inbred Strains , Pituitary-Adrenal System/physiology , Radioimmunoassay/methods
8.
Physiol Behav ; 88(1-2): 173-82, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16687160

ABSTRACT

Mice selected for aggressiveness (long and short attack latency mice; LALs and SALs, respectively) constitute a useful tool in studying the neural background of aggressive behavior, especially so as the SAL strain shows violent forms of aggressiveness that appear abnormal in many respects. By using c-Fos staining as a marker of neuronal activation, we show here that agonistic encounters result in different activation patterns in LAL and SAL mice. In LALs, agonistic encounters activated the lateral septum, bed nucleus of stria terminalis, medial amygdala, paraventricular nucleus of the hypothalamus, anterior hypothalamic nucleus and tuber cinereum area (both being analogous with the rat hypothalamic attack area), dorsolateral periaqueductal gray, and locus coeruleus. This pattern is similar with that seen in the territorial aggression of male mice, rats and hamsters, and non-lactating female mice. SALs showed strong fight-induced activations in the central amygdala and lateral/ventrolateral periaqueductal gray. In this strain, no activation was seen in the lateral septum and the dorsolateral periaqueductal gray. This pattern is similar with that seen in other models of violent aggression, e.g., in attacks induced by hypothalamic stimulation in rats, quiet biting in cats, lactating female mice, and hypoarousal-driven abnormal aggression in rats. We suggest here that the excessive activation of the central amygdala and lateral/ventrolateral periaqueductal gray--accompanied by a smaller activation of the septum and dorsolateral periaqueductal gray--underlay the expression of violent attacks under various circumstances.


Subject(s)
Aggression/physiology , Brain/metabolism , Gene Expression/physiology , Proto-Oncogene Proteins c-fos/metabolism , Violence , Animals , Behavior, Animal , Brain/anatomy & histology , Immunohistochemistry/methods , Male , Mice , Models, Biological , Reaction Time/physiology
9.
Physiol Behav ; 74(1-2): 205-11, 2001.
Article in English | MEDLINE | ID: mdl-11564470

ABSTRACT

Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT(1A)) receptors, both in receptor binding and in mRNA levels, in the aggressive line [Brain Res 736 (1996) 338]. The aim of this experiment was to study whether similar differences in 5-HT(1A) receptors exist in individuals from a random-bred rat strain, varying in aggressiveness. In addition, because little is known about the functional consequences of these receptor differences, a response mediated via postsynaptic 5-HT(1A) receptors (i.e., hypothermia) was studied both in the selection lines of mice and in the randomly bred rats. The difference in receptor binding, as demonstrated in mice previously, could not be shown in rats. However, both in rats and mice, the hypothermic response to the 5-HT(1A) agonist alnespirone was larger in aggressive individuals. So, in the rat strain as well as in the mouse lines, there is, to a greater or lesser extent, an enhanced sensitivity of postsynaptic 5-HT(1A) receptors in aggressive individuals. This could be a compensatory up-regulation induced by a lower basal 5-HT neurotransmission, which is in agreement with the serotonin deficiency hypothesis of aggression.


Subject(s)
Aggression/physiology , Receptors, Neurotransmitter/drug effects , Receptors, Serotonin/drug effects , Aggression/psychology , Animals , Autoradiography , Body Temperature/drug effects , Male , Mice , Piperazines/pharmacology , Rats , Receptors, Serotonin, 5-HT1 , Serotonin Receptor Agonists/pharmacology
10.
J Neurosci ; 21(10): 3639-45, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11331393

ABSTRACT

The CNS melanocortin (MC) system is implicated as a mediator of the central effects of leptin, and reduced activity of the CNS MC system promotes obesity in both rodents and humans. Because activation of CNS MC receptors has direct effects on autonomic outflow and metabolism, we hypothesized that food intake-independent mechanisms contribute to development of obesity induced by pharmacological blockade of MC receptors in the brain and that changes in hypothalamic neuropeptidergic systems known to regulate weight gain [i.e., corticotropin-releasing hormone (CRH), cocaine-amphetamine-related transcript (CART), proopiomelanocortin (POMC), and neuropeptide Y (NPY)] would trigger this effect. Relative to vehicle-treated controls, third intracerebroventricular (i3vt) administration of the MC receptor antagonist SHU9119 to rats for 11 d doubled food and water intake (toward the end of treatment) and increased body weight ( approximately 14%) and fat content ( approximately 90%), hepatic glycogen content ( approximately 40%), and plasma levels of cholesterol ( approximately 48%), insulin ( approximately 259%), glucagon ( approximately 80%), and leptin ( approximately 490%), whereas spontaneous locomotor activity and body temperature were reduced. Pair-feeding of i3vt SHU9119-treated animals to i3vt vehicle-treated controls normalized plasma levels of insulin, glucagon, and hepatic glycogen content, but only partially reversed the elevations of plasma cholesterol ( approximately 31%) and leptin ( approximately 104%) and body fat content ( approximately 27%). Reductions in body temperature and locomotor activity induced by i3vt SHU9119 were not reversed by pair feeding, but rather were more pronounced. None of the effects found can be explained by peripheral action of the compound. The obesity effects occurred despite a lack in neuropeptide expression responses in the neuroanatomical range selected across the arcuate (i.e., CART, POMC, and NPY) and paraventricular (i.e., CRH) hypothalamus. The results indicate that reduced activity of the CNS MC pathway promotes fat deposition via both food intake-dependent and -independent mechanisms.


Subject(s)
Behavior, Animal/physiology , Hypothalamus/metabolism , Obesity/metabolism , Receptors, Corticotropin/metabolism , Signal Transduction/physiology , Animals , Behavior, Animal/drug effects , Body Composition/drug effects , Body Temperature/drug effects , Cholesterol/blood , Drinking/drug effects , Eating/drug effects , Glucagon/blood , Hypothalamus/drug effects , Injections, Intraventricular , Insulin/blood , Leptin/blood , Male , Melanocyte-Stimulating Hormones/administration & dosage , Motor Activity/drug effects , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Corticotropin/antagonists & inhibitors , Receptors, Melanocortin , Signal Transduction/drug effects
11.
Physiol Behav ; 72(3): 349-54, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11274676

ABSTRACT

The experiments explored the nature and time course of changes in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) binding in homogenates of various brain regions and pituitary of male Wistar rats following social defeat stress. One week after defeat, the binding capacity of GRs was decreased in the hippocampus and the hypothalamus while no changes were observed in the parietal cortex and the pituitary. The number of MRs remained at the same level as in undefeated rats. Three weeks postdefeat, the initially down-regulated GR returned to baseline level in the hippocampus and the hypothalamus. However, GR binding was now decreased in the parietal cortex. Severe down-regulation of MRs was detected in the hippocampal and septal tissue. The results show that brief but intense stress like social defeat induces a long-lasting down-regulation of corticosteroid receptors and that the temporal dynamics of these changes are not only differential for GRs and MRs but also for brain sites.


Subject(s)
Aggression/physiology , Brain Chemistry/physiology , Down-Regulation/physiology , Receptors, Steroid/biosynthesis , Social Dominance , Animals , Blotting, Western , Brain/anatomy & histology , Male , Organ Size/physiology , Rats , Rats, Wistar , Thymus Gland/physiology , Time Factors
12.
Neuropsychopharmacology ; 23(1): 20-33, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10869883

ABSTRACT

To elucidate the relative contribution of somatodendritic 5-HT(1A) autoreceptors and postsynaptic 5-HT(1A) receptors in the specific anti-aggressive properties of 5-HT(1A) receptor agonists, the influence of the novel benzodioxopiperazine compound S-15535, which behaves in vivo as a competitive antagonist at postsynaptic 5-HT(1A) receptors and as an agonist at 5-HT(1A) autoreceptors, upon offensive and defensive aggression was investigated in wild-type rats using a resident-intruder paradigm. S-15535 exerted a potent dose-dependent decrease in offensive, but not defensive, aggressive behavior (inhibitory dose (ID)(50) = 1.11 mg/kg). This anti-aggressive profile was roughly similar to that of the potent pre- and postsynaptic 5-HT(1A) full agonist alnespirone (ID(50) = 1. 24). The drug's profound anti-aggressive actions were not accompanied by sedative side effects or signs of the "5-HT(1A) receptor-mediated behavioral syndrome," which are characteristically induced by prototypical 5-HT(1A) receptor agonists like 8-OH-DPAT and buspirone. The selective pre- and postsynaptic 5-HT(1A) antagonist WAY-100635, which was inactive given alone, abolished the anti-aggressive effects of S-15535 and alnespirone, thereby confirming the involvement of 5-HT(1A) receptors. Furthermore, combined administration of S-15535 and alnespirone elicited an additive anti-aggressive effect, providing further support for somatodendritic 5-HT(1A) receptor involvement. Finally, the postsynaptic 5-HT(1A) antagonistic properties of S-15535 were confirmed by showing blockade of the alnespirone-induced hypothermia, a postsynaptic 5-HT(1A) mediated response in the rat. These data provide extensive evidence that the anti-aggressive effects of 5-HT(1A) receptor agonists are expressed via their action on somatodendritic 5-HT(1A) autoreceptors, thereby most likely attenuating intruder-activated serotonergic neurotransmission.


Subject(s)
Aggression/drug effects , Piperazines/pharmacology , Receptors, Serotonin/drug effects , Serotonin Receptor Agonists/pharmacology , Spiro Compounds/pharmacology , Aggression/physiology , Animals , Body Temperature/drug effects , Body Temperature/physiology , Dose-Response Relationship, Drug , Male , Motor Activity/drug effects , Motor Activity/physiology , Pyridines/pharmacology , Rats , Receptors, Serotonin/physiology , Receptors, Serotonin, 5-HT1 , Serotonin Antagonists/pharmacology
13.
Physiol Behav ; 67(5): 733-8, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10604845

ABSTRACT

The acute consequences of a social aversive stimulus (defeat) on the autonomic control upon the electrical activity of the heart were measured and compared to those observed in three nonsocial stress paradigms, namely restraint, shock-probe test, and swimming. Electrocardiograms were recorded from rats via radiotelemetry, and the autonomic neural control of the heart was evaluated via measures of heart rate and heart rate variability, such as the average R-R interval (RR), the standard deviation of RR (SD), the coefficient of variance (SD/RR), and the root-mean-square of successive R-R interval differences (r-MSSD). Although all stressors induced significant reductions of average R-R interval, the effect of defeat was significantly larger (p < 0.05). The social stimulus also determined a significant decrease in the variability indexes (p < 0.01 for all), whereas in the other stress conditions they were either unchanged or increased (SD/RR during restraint, p < 0.05; SD and SD/RR during swimming, p < 0.05 and p < 0.01). Cardiac arrhythmias (mostly ventricular premature beats, VPBs) were far more frequent during defeat than during the other challenging situations (p < 0.01), with an average of 33.5 +/- 6.5 VPBs per 15-min test recording. These data suggest that during defeat autonomic control was shifted toward a sympathetic dominance, whereas in rats exposed to nonsocial stressors, although significant heart rate accelerations were also found, sympathovagal balance was substantially maintained. These differences in autonomic stress responsivity explain the different susceptibility to ventricular arrhythmias and indicate that a social challenge can be far more detrimental for cardiac electrical stability than other nonsocial aversive stimuli.


Subject(s)
Heart Rate/physiology , Social Environment , Stress, Psychological/physiopathology , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Animals , Arrhythmias, Cardiac/physiopathology , Electrocardiography , Electroshock , Male , Rats , Restraint, Physical , Stress, Psychological/psychology , Swimming , Telemetry
14.
Neurosci Biobehav Rev ; 23(7): 925-35, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10580307

ABSTRACT

This paper summarizes the current views on coping styles as a useful concept in understanding individual adaptive capacity and vulnerability to stress-related disease. Studies in feral populations indicate the existence of a proactive and a reactive coping style. These coping styles seem to play a role in the population ecology of the species. Despite domestication, genetic selection and inbreeding, the same coping styles can, to some extent, also be observed in laboratory and farm animals. Coping styles are characterized by consistent behavioral and neuroendocrine characteristics, some of which seem to be causally linked to each other. Evidence is accumulating that the two coping styles might explain a differential vulnerability to stress mediated disease due to the differential adaptive value of the two coping styles and the accompanying neuroendocrine differentiation.


Subject(s)
Adaptation, Psychological/physiology , Behavior, Animal/physiology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Animals
15.
J Neuroendocrinol ; 11(7): 513-20, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10444308

ABSTRACT

The present study focuses on the long-term changes in the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis following two short-lasting episodes of intensive stress in the rat stress model of social defeat and the possible similarities with HPA functioning in human affective disorders. Male Wistar rats experienced social defeats on 2 consecutive days by an aggressive male conspecific. The long-term effect of these defeats on resting and ovine corticotropin-releasing factor (oCRF; intravenous (i.v.) 0. 5 microg/kg) induced levels of plasma ACTH and corticosterone (CORT) were measured 1 and 3 weeks later. In a second experiment the glucocorticoid feedback regulation of HPA function was tested in a combined dexamethasone (DEX)/CRF test (DEX; 25 microg/kg s.c., 90 min before oCRF injection, 0.5 microg/kg). The oCRF challenges were performed between 11.00 and 13.00 h (about three hours after start of the light phase). One week after defeat the ACTH response to CRF was significantly enhanced in defeated rats as compared to controls. Three weeks after defeat the ACTH response was back to control levels. The increased ACTH response 1 week after the stressor was not reflected in higher CORT levels. Neither were baseline ACTH and CORT levels affected by the prior stress exposure. DEX pretreatment inhibited pituitary adrenocortical activity, reflected both in reduced baseline and response values of ACTH and CORT. The ACTH response to CRF following DEX administration was significantly higher in defeated rats as compared to controls both at one and three weeks after defeat. A reduced DEX suppression of baseline secretion of ACTH appeared 3 weeks after defeat. The same tendency was apparent in response and baseline values of CORT. The differences in CORT between socially stressed and control treated rats, however, did not reach significance. The possible role of changes in glucocorticoid-(GR) and mineralocorticoid receptor (MR) binding in the altered regulation of HPA activity following defeat were studied in brain and pituitary of male Wistar rats 1 and 3 weeks after defeat. One week after defeat GR-binding decreased in hippocampus and hypothalamus. No changes were observed in GR-binding in the pituitary nor in MR-binding in any of the regions analysed. Three weeks after defeat GR-binding recovered in hippocampus and hypothalamus but at this time MR-binding in hippocampal tissue was seriously decreased. In a fourth experiment vasopressin (AVP) and CRF stores in the external zone of the median eminence (ZEME) were measured by quantitative immunocytochemistry one and three weeks after defeat and compared with controls. Social defeat failed to induce a change in the immunocytochemical stores of AVP or CRF. The present findings show that in rats short-lasting stressors like defeat induce long-lasting, temporal dynamic changes in the regulation of the HPA axis. Since these changes in time are reflected in GRs and MRs in different brain areas an altered corticosteroid receptor binding might play an important role in the affected HPA activity following defeat.


Subject(s)
Adrenal Cortex/drug effects , Behavior, Animal , Corticotropin-Releasing Hormone/pharmacology , Dexamethasone/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Animals , Arginine Vasopressin/metabolism , Corticotropin-Releasing Hormone/metabolism , Humans , Immunohistochemistry , Male , Median Eminence/metabolism , Protein Binding , Rats , Rats, Wistar , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Sheep
16.
Psychoneuroendocrinology ; 24(3): 285-300, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10101734

ABSTRACT

Social stress in rats is known to induce long-lasting, adverse changes in behaviour and physiology, which seem to resemble certain human psychopathologies, such as depression and anxiety. The present experiment was designed to assess the influence of individual or group housing on the vulnerability of male Wildtype rats to long-term effects of inescapable social defeat. Group-housed rats were individually exposed to an aggressive, unfamiliar male conspecific, resulting in a social defeat. Defeated rats were then either individually housed or returned to their group. The changes in their behaviour and physiology were then studied for 3 weeks. Results showed that individually housed rats developed long-lasting, adverse behavioural and physiological changes after social defeat. Their body growth was significantly retarded (p < .05) between 7 and 14 days after defeat. When individually and group-housed rats were exposed to a mild stressor (sudden silence) 2 days after defeat, both groups became highly immobile. However, when exposure was repeated at day 21, individually housed rats were still highly immobile compared to group-housed rats which regained their normal mobility after only 7 days. In an open field test, also regularly repeated, individually housed rats took significantly longer to leave their home base and were also significantly less mobile than group-housed rats over the entire 3-week test period as well as at specific timepoints. When the rats were placed in an elevated plus-maze 14 days after defeat, those that were individually housed were significantly more anxious than those that were group-housed. When tested at 21 days after defeat in a combined dexamethasone (DEX)/corticotrophin-releasing factor (CRF) test, results showed that the hypothalamic-pituitary-adrenocortical (HPA) activity in individually housed rats was higher. This was evidenced in the latter animals by the fact that DEX was significantly less able to suppress the secretion of ACTH and corticosterone, and by a significantly higher release of ACTH after administration of CRF. Although the weights of the spleen and testes of the two groups did not differ, the adrenals of individually housed rats were larger and the thymus and seminal vesicles were smaller. We conclude that when rats are isolated after defeat, they show long-lasting, adverse behavioural and physiological changes that resemble symptoms of stress-related disorders. In contrast, when familiar rats are housed together these effects of a social defeat are greatly reduced. These findings show that housing conditions importantly influence the probability of long-term adverse behavioural and physiological effects of social defeat in male Wildtype rats.


Subject(s)
Behavior, Animal/physiology , Housing, Animal , Social Behavior , Adrenal Cortex/drug effects , Adrenal Cortex/physiology , Adrenal Glands/anatomy & histology , Animals , Corticotropin-Releasing Hormone/pharmacology , Dexamethasone/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Male , Motor Activity , Organ Size , Rats , Seminal Vesicles/anatomy & histology , Stress, Physiological , Thymus Gland/anatomy & histology , Weight Gain
17.
J Pharmacol Exp Ther ; 288(3): 1125-33, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10027850

ABSTRACT

The present study characterized the effects of the novel, selective, and potent 5-hydroxytryptamine1A (serotonin) (5-HT1A) receptor agonist, alnespirone [S-20499, (S)-N-4-[5-methoxychroman-3-yl)propylamino)butyl- 8-azaspiro-(4,5)-diacetamide, hydrochloride] on offensive and defensive resident-intruder aggression in wild-type rats and compared its actions with those of the prototypical full 5-HT1A agonist 8-hydroxy-2- dipropylaminotetralin (8-OH-DPAT), the partial 5-HT1A agonists ipsapirone and buspirone, and the mixed 5-HT1A/1B agonist eltoprazine. All five agonists exerted effective dose-dependent decreases of offensive aggressive behavior in resident rats; 8-OH-DPAT was the most potent (ID50 = 0.074 mg/kg), followed by eltoprazine (0.24), buspirone (0.72), ipsapirone (1.08), and alnespirone (1.24). However, in terms of selectivity of the antiaggressive effects as determined by the absence of decrements in social interest and general motor activity, alnespirone appeared to be superior. In the defensive aggression test, neither alnespirone nor any of the other four agonists changed defensive behaviors in the intruder rats. The involvement of 5-HT1A receptors in the antiaggressive actions of these drugs was confirmed by showing that the selective 5-HT1A receptor antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2- pyridinyl)cyclohexanecarboxamide trihydrochloride), which was inactive alone, fully prevented the antiaggressive effects of alnespirone, 8-OH-DPAT, and buspirone and partly reversed those of ipsapirone and eltoprazine. The data clearly indicate that alnespirone effectively suppresses offensive aggression with an advantageous profile of action compared with other full or partial 5-HT1A agonists. These selective antiaggressive actions of alnespirone are mediated by stimulating 5-HT1A receptors, presumably the somatodendritic autoreceptors at the raphe nuclei. Furthermore, the data provide evidence for a major involvement of these 5-HT1A receptors in the modulation of aggressive behavior by 8-OH-DPAT, ipsapirone, buspirone, and eltoprazine.


Subject(s)
8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Aggression/drug effects , Behavior, Animal/drug effects , Buspirone/pharmacology , Piperazines/pharmacology , Pyrimidines/pharmacology , Receptors, Serotonin/drug effects , Serotonin Receptor Agonists/pharmacology , Spiro Compounds/pharmacology , Animals , Male , Pyridines/pharmacology , Rats , Receptors, Serotonin, 5-HT1 , Serotonin Antagonists/pharmacology
18.
Behav Neurosci ; 113(6): 1283-90, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10636307

ABSTRACT

This study shows that the long-term consequences of a social conflict in rats do not depend on the physical intensity of the fight in terms of aggression received but, especially, on how the subjects deal with it. Experimental rats were introduced into the cage of an aggressive conspecific for 1 hr, and the effects on daily rhythms of heart rate, body temperature, and activity thereafter were measured by means of telemetry. In some rats, the confrontation caused a strong decrease in the daily rhythm amplitude that lasted up to 3 weeks, whereas other subjects showed only minor changes. The changes in rhythm amplitude did not correlate with the number of attacks received from the territory owner. Contrary to this, the changes showed a clear negative correlation with the aggression of the experimental rats themselves. Subjects fighting back and counterattacking the cage owner subsequently had a smaller reduction in rhythm amplitude.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Body Temperature/physiology , Conflict, Psychological , Heart Rate/physiology , Motor Activity/physiology , Animals , Circadian Rhythm/physiology , Male , Rats , Social Behavior , Time Factors
19.
Stress ; 3(1): 27-40, 1999 Aug.
Article in English | MEDLINE | ID: mdl-19016191

ABSTRACT

The purpose of the study was to determine which stressor qualities (escapable vs. inescapable stress and unconditioned vs. conditioned stress) can potentiate fear in the elevated plus-maze. While inescapable stress potentiated fear, escapable stress did not, but escapable stress increased the locomotor activity (closed arm entries). Inescapable stress only potentiated fear when re-exposure to the former shock compartment, 24 h after footshock and without further footshock, took place just before to 90 min before testing in the elevated plus-maze. We conclude that fear-potentiation in the plus-maze depends on stressor controllability and contextual conditioning. Fear-potentiation was reduced by the anxiolytic diazepam (0.5, 1.0 and 2.0 mg/kg, s.c.) and was further enhanced by the anxiogenic DMCM (1.0 mg/kg, s.c). The fear-potentiated plus-maze test may be a valuable tool in the search for novel anxiolytics and in the study of the neurobiology of fear-potentiation, fear conditioning and generalization of fear.


Subject(s)
Anxiety/psychology , Fear/psychology , Maze Learning , Animals , Anti-Anxiety Agents/pharmacology , Avoidance Learning/drug effects , Carbolines/pharmacology , Conditioning, Classical , Conditioning, Psychological , Diazepam/pharmacology , Electroshock , Exploratory Behavior/drug effects , Male , Maze Learning/drug effects , Motor Activity/drug effects , Rats , Rats, Wistar , Stress, Psychological/psychology
20.
Psychoneuroendocrinology ; 23(3): 205-18, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9695127

ABSTRACT

The present study was conducted to investigate the long-term consequences of repeated daily bolus injections of corticotropin-releasing factor (CRF) intracerebroventricularly (ICV) on ongoing locomotor activity and physiology in the home cage of individually housed rats. For this purpose ovine CRF (1 microgram/3 microliters) was injected once daily during the early resting phase into the lateral ventricle for a period of 10 days. Changes in daily rhythms in heart rate, body temperature and motor activity were recorded telemetrically before and during the treatment period. Daily central CRF injection delayed the body weight gain, increased adrenal weight, and decreased the weight of the thymus at the end of the experiment. The acute behavioral and physiological responses to CRF did not habituate with repetition of treatment. CRF treatment also failed to affect the long-term regulation of baseline heart rate, body temperature and motor activity during the light phase, as measured during the hour preceding the daily CRF injection. Mean heart rate during the dark phase was, however, significantly decreased in CRF-treated rats during the whole experimental 10-day period, without any sign of habituation. The failure of episodic CRF to affect long-term regulation of baseline body temperature during the light as well as the dark phase was noteworthy because an increased daytime body temperature lasting for several days is a characteristic marker of various behavioral stressors. Since a previous study showed that the temperature response during chronic CRF infusion was similar to the long-term effects of behavioral stress it is hypothesized that chronic but not episodic increases in central CRF levels are related to the induction and persistence of part of the stress-related behavioral and physiological disorders.


Subject(s)
Arousal/drug effects , Brain/drug effects , Corticotropin-Releasing Hormone/pharmacology , Motor Activity/drug effects , Animals , Body Temperature/drug effects , Body Weight/drug effects , Circadian Rhythm/drug effects , Drug Administration Schedule , Habituation, Psychophysiologic/drug effects , Heart Rate/drug effects , Injections, Intraventricular , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...