Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Metab Brain Dis ; 34(2): 565-573, 2019 04.
Article in English | MEDLINE | ID: mdl-30635861

ABSTRACT

The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1ß and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.


Subject(s)
Diet, High-Fat/adverse effects , Energy Metabolism/physiology , Hypothalamus/metabolism , Obesity/metabolism , Animals , Antioxidants/pharmacology , Biomarkers/metabolism , Energy Intake/drug effects , Inflammation/metabolism , Male , Mice , Neurochemistry/methods , Oxidative Stress/drug effects
2.
Mol Neurobiol ; 55(6): 5255-5268, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28879460

ABSTRACT

Neurological dysfunction as a result of neuroinflammation has been reported in sepsis and cause high mortality. High levels of cytokines stimulate the formation of neurotoxic metabolites by kynurenine (KYN) pathway. Vitamin B6 (vit B6) has anti-inflammatory and antioxidant properties and also acts as a cofactor for enzymes of the KYN pathway. Thus, by using a relevant animal model of polymicrobial sepsis, we studied the effect of vit B6 on the KYN pathway, acute neurochemical and neuroinflammatory parameters, and cognitive dysfunction in rats. Male Wistar rats (250-300 g) were submitted to cecal ligation and perforation (CLP) and divided into sham + saline, sham + vit B6, CLP + saline, and CLP + vit B6 (600 mg/kg, s.c.) groups. Twenty-four hours later, the prefrontal cortex and hippocampus were removed for neurochemical and neuroinflammatory analyses. Animals were followed for 10 days to determine survival rate, when cognitive function was assessed by behavioral tests. Vitamin B6 interfered in the activation of kynurenine pathway, which led to an improvement in neurochemical and neuroinflammatory parameters and, consequently, in the cognitive functions of septic animals. Thus, the results indicate that vit B6 exerts neuroprotective effects in acute and late consequences after sepsis.


Subject(s)
Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Kynurenine/metabolism , Sepsis/drug therapy , Sepsis/microbiology , Vitamin B 6/therapeutic use , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/pathology , Cytokines/metabolism , Energy Metabolism/drug effects , Inflammation/pathology , Inflammation Mediators/metabolism , Kaplan-Meier Estimate , Lipid Peroxidation/drug effects , Male , Nitrates/metabolism , Nitrites/metabolism , Oxidative Stress/drug effects , Permeability , Peroxidase/metabolism , Protein Carbonylation/drug effects , Rats, Wistar , Tryptophan/metabolism , Vitamin B 6/pharmacology
3.
Metabolism ; 64(9): 967-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26072135

ABSTRACT

Currently, obesity and its associated complications are considered major public health problems worldwide. Because the causes are multifactorial and complex, different treatment methods are used, which include diet and exercise, as well as the use of drugs, although they can have adverse side effects. A new target for the treatment of obesity may be the incretin system, which consists of hormones that seem to contribute to weight loss. In this sense, some studies have shown a relationship between weight loss and drugs related to incretin system, including glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. The objective of this review is to summarize the association between the incretin system and obesity treatment.


Subject(s)
Anti-Obesity Agents/therapeutic use , Incretins/therapeutic use , Obesity/drug therapy , Animals , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/agonists , Humans , Incretins/physiology , Obesity/physiopathology , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...