Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160724

ABSTRACT

Thermoelectric generators are an excellent option for waste heat reuse. Materials for such devices have seen their thermoelectric properties improving constantly. The functioning of a generator, however, does not only depend on thermoelectric properties. Thermal and mechanical properties play a decisive role in the feasibility of any thermoelectric generator. To shed light on the properties exhibited by thermoelectric materials, we present the temperature dependent characterization of Young's modulus and coefficient of thermal expansion for Mg2Si0.3Sn0.7. Comparing undoped to Bi-doped n-type and Li-doped p-type material, we investigated the influence of doping in the relevant temperature regime and found the influences to be minor, proving similar properties for n- and p-type. We found a Young's modulus of 84 GPa for the p-type and 83 GPa for the n-type, similar to that of the undoped compound with 85 GPa. The thermal expansion coefficients of undoped, as well as n- and p-type were equally similar with values ranging from 16.5 to 17.5 × 10-6 1/K. A phase analysis was performed to further compare the two materials, finding a similar phase distribution and microstructure. Finally, using the gathered data, estimations on the possible thermally induced stresses under a temperature difference are provided to evaluate the relevance of knowing temperature dependent thermal and mechanical properties.

2.
Materials (Basel) ; 14(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832174

ABSTRACT

Thermoelectric generators are a reliable and environmentally friendly source of electrical energy. A crucial step for their development is the maximization of their efficiency. The efficiency of a TEG is inversely related to its electrical contact resistance, which it is therefore essential to minimize. In this paper, we investigate the contacting of an Al electrode on Mg2(Si,Sn) thermoelectric material and find that samples can show highly asymmetric electrical contact resistivities on both sides of a leg (e.g., 10 µΩ·cm2 and 200 µΩ·cm2). Differential contacting experiments allow one to identify the oxide layer on the Al foil as well as the dicing of the pellets into legs are identified as the main origins of this behavior. In order to avoid any oxidation of the foil, a thin layer of Zn is sputtered after etching the Al surface; this method proves itself effective in keeping the contact resistivities of both interfaces equally low (<10 µΩ·cm2) after dicing. A slight gradient is observed in the n-type leg's Seebeck coefficient after the contacting with the Zn-coated electrode and the role of Zn in this change is confirmed by comparing the experimental results to hybrid-density functional calculations of Zn point defects.

3.
Entropy (Basel) ; 22(10)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33286897

ABSTRACT

The efficiency of a thermoelectric (TE) generator for the conversion of thermal energy into electrical energy can be easily but roughly estimated using a constant properties model (CPM) developed by Ioffe. However, material properties are, in general, temperature (T)-dependent and the CPM yields meaningful estimates only if physically appropriate averages, i.e., spatial averages for thermal and electrical resistivities and the temperature average (TAv) for the Seebeck coefficient (α), are used. Even though the use of αTAv compensates for the absence of Thomson heat in the CPM in the overall heat balance, we find that the CPM still overestimates performance (e.g., by up to 6% for PbTe) for many materials. The deviation originates from an asymmetric distribution of internally released Joule heat to either side of the TE leg and the distribution of internally released Thomson heat between the hot and cold side. The Thomson heat distribution differs from a complete compensation of the corresponding Peltier heat balance in the CPM. Both effects are estimated quantitatively here, showing that both may reach the same order of magnitude, but which one dominates varies from case to case, depending on the specific temperature characteristics of the thermoelectric properties. The role of the Thomson heat distribution is illustrated by a discussion of the transport entropy flow based on the α(T) plot. The changes in the lateral distribution of the internal heat lead to a difference in the heat input, the optimum current and thus of the efficiency of the CPM compared to the real case, while the estimate of generated power at maximum efficiency remains less affected as it is bound to the deviation of the optimum current, which is mostly <1%. This deviation can be corrected to a large extent by estimating the lateral Thomson heat distribution and the asymmetry of the Joule heat distribution. A simple guiding rule for the former is found.

4.
Adv Sci (Weinh) ; 7(12): 2000070, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596116

ABSTRACT

Magnesium silicide and its solid solutions are among the most attractive materials for thermoelectric generators in the temperature range of 500-800 K. However, while n-type Mg2(Si,Ge,Sn) materials show excellent thermoelectric performance, the corresponding p-type solid solutions are still inferior, mainly due to less favorable properties of the valence bands compared to the conduction bands. Here, Li doped Mg2Ge with a thermoelectric figure of merit zT of 0.5 at 700 K is reported, which is four times higher than that of p-type Mg2Si and double than that of p-type Mg2Sn. The reason for the excellent properties is an unusual temperature dependence of Seebeck coefficient and electrical conductivity compared to a standard highly doped semiconductor. The properties cannot be captured assuming a rigid band structure but well reproduced assuming two parabolic valence bands with a strong temperature dependent interband separation. According to the analysis, the difference in energy between the two bands decrease with temperature, leading to a band convergence at around 650 K and finally to an inversion of the band positions. The finding of a combination of a light and a heavy band that are non-rigid with temperature can pave the way for further optimization of p-type Mg2(Si,Ge,Sn).

5.
ACS Appl Mater Interfaces ; 11(43): 40769-40780, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31621281

ABSTRACT

Magnesium silicides can be used for thermoelectric energy conversion as high values of figure of merit zT were obtained for n-type (1.4 at 500 °C) and p-type (0.55 at 350 °C) materials. This, however, needs to be complemented by low resistive and stable contacting to ensure long-term thermogenerator operation and minimize losses. In this study, we selected Cu and Ni45Cu55 as contacting electrodes for their high electrical conductivity, similar coefficient of thermal expansion (CTE), and good adhesion to Mg2(Si,Sn). Both electrodes were joined to Mg2Si0.3Sn0.7 pellets by hot pressing in a current-assisted press. Microstructural changes near the interface were analyzed using SEM/EDX analysis, and the specific electrical contact resistance rc was estimated using a traveling potential probe combined with local Seebeck scanning. Good contacting was observed with both electrode materials. Results show low rc with Cu, suitable for applications, for both n- and p-type silicides (<10 µΩ·cm2), with the occurrence of wide, highly conductive diffusion regions. Ni45Cu55 joining also showed relatively low rc values (∼30 µΩ·cm2) for n- and p-type but had a less inhomogeneous reaction layer. We also performed annealing experiments with Cu-joined samples at 450 °C for 1 week to investigate the evolution of the contact regions under working temperatures. rc values increased (up to ∼100 µΩ·cm2) for annealed n-type samples but remained low (<10 µΩ·cm2) for p-type. Therefore, Cu is a good contacting solution for p-type Mg2(Si,Sn) and a potential one for n-type if the diffusion causing contact property degradation can be prevented.

6.
Materials (Basel) ; 12(11)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181708

ABSTRACT

α-MgAgSb is a very promising thermoelectric material with excellent thermoelectric properties between room temperature and 300 °C, a range where few other thermoelectric materials show good performance. Previous reports rely on a two-step ball-milling process and/or time-consuming annealing. Aiming for a faster and scalable fabrication route, herein, we investigated other potential synthesis routes and their impact on the thermoelectric properties of α-MgAgSb. We started from a gas-atomized MgAg precursor and employed ball-milling only in the final mixing step. Direct comparison of high energy ball-milling and planetary ball-milling revealed that high energy ball milling already induced formation of MgAgSb, while planetary ball milling did not. This had a strong impact on the microstructure and secondary phase fraction, resulting in superior performance of the high energy ball milling route with an attractive average thermoelectric figure of merit of z T avg = 0.9. We also show that the formation of undesired secondary phases cannot be avoided by a modification of the sintering temperature after planetary ball milling, and discuss the influence of commonly observed secondary phases on the carrier mobility and on the thermoelectric properties of α-MgAgSb.

7.
RSC Adv ; 9(40): 23021-23028, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-35514519

ABSTRACT

Considering the need for large quantities of high efficiency thermoelectric materials for industrial applications, a scalable synthesis method for high performance magnesium silicide based materials is proposed. The synthesis procedure consists of a melting step followed by high energy ball milling. All the materials synthesized via this method demonstrated not only high functional homogeneity but also high electrical conductivity and Seebeck coefficients of around 1000 Ω-1 cm-1 and -200 µV K-1 at 773 K, respectively. The measured values were similar for all the samples extracted from the ∅50 mm and ∅70 mm compacted pellets and were stable upon thermal cycling. Thermal stability experiments from 168 hours to 720 hours at 723 K revealed no significant change in the material properties. The low thermal conductivity of ∼2.5 W m-1 K-1 at 773 K led to a maximum figure of merit, zT max, of 1.3 at the same temperature and an average value, zT avg, of 0.9 between 300 K and 773 K, which enables high efficiency in future silicide-based thermoelectric generators.

8.
J Nanosci Nanotechnol ; 17(3): 1547-554, 2017 03.
Article in English | MEDLINE | ID: mdl-29693339

ABSTRACT

Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites' mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material's thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.

9.
Inorg Chem ; 54(16): 7818-27, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26213290

ABSTRACT

The incongruently melting single-filled skutterudite InxCo4Sb12 is known as a promising bulk thermoelectric material. However, the products of current bulk syntheses contain always impurities of InSb, Sb, CoSb, or CoSb2, which prevent an unbiased determination of its thermoelectric properties. We report a new two-step synthesis of high-purity InxCo4Sb12 with nominal compositions x = 0.12, 0.15, 0.18, and 0.20 that separates the kieftite (CoSb3) formation from the topotactic filler insertion. This approach allows conducting the reactions at lower temperatures with shorter reaction times and circumventing the formation of impurity phases. The synthesis can be extended to other filled skutterudites. High-density (>98%) pellets for thermoelectric characterization were prepared by current-assisted short-time sintering. Sample homogeneity was demonstrated by potential and Seebeck microprobe measurements of the complete pellet surfaces. Synchrotron X-ray diffraction showed a purity of 99.9% product with traces (≤0.1%) of InSb in samples of nominal composition In0.18Co4Sb12 and In0.20Co4Sb12. Rietveld refinements revealed a linear correlation between the true In occupancy and the lattice parameter a. This allows the determination of the true In filling in skutterudites and predicting the In content of unknown AxCo4Sb12. The high purity of InxCo4Sb12 allowed studying the transport properties without bias from side phases. A figure of merit close to unity at 420 °C was obtained for a sample of a true composition of In0.160(2)Co4Sb12 (nominal composition In0.18Co4Sb12). The lower degree of In filling has a dramatic effect on the thermoelectric properties as demonstrated by the sample of nominal composition In0.20Co4Sb12. The presence of InSb in amounts of ∼0.1 vol% led to a substantially lower degree of interstitial site filling of 0.144, and the figure of merit zT decreased by 18%, which demonstrates the significance of the true filler atom content in skutterudite materials.

10.
Dalton Trans ; 43(27): 10529-40, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24681809

ABSTRACT

In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge(0.6)Sn(0.4)Sb2Te4 and 9P-Ge(1.3)Sn(0.7)Sb2Te5. In both cases, Sb predominantly concentrates on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge prefers the position in the middle of the slabs. No significant antisite disorder is present. Comparable trends can be found in related compounds; they are due to the single-side coordination of the Te atoms at the van der Waals gap, which can be compensated more effectively by Sb(3+) due to its higher charge in comparison to Ge(2+). The structure model of 21R-Ge(0.6)Sn(0.4)Sb2Te4 was confirmed by high-resolution electron microscopy and electron diffraction. In contrast, electron diffraction patterns of 9P-Ge(1.3)Sn(0.7)Sb2Te5 reveal a significant extent of stacking disorder as evidenced by diffuse streaks along the stacking direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal conductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = ~0.25 at 450 °C for both Ge(0.6)Sn(0.4)Sb2Te4 and Ge(1.3)Sn(0.7)Sb2Te5, which is higher than ~0.20 for unsubstituted stable layered Ge-Sb-Te compounds.

11.
Inorg Chem ; 52(19): 11288-94, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24093486

ABSTRACT

Exchanging one Ge(2+) with two Li(+) per formula unit in (GeTe)n(Sb2Te3) (n = 1, 2, 3, ...) eliminates cation vacancies, because it leads to an equal number of cations and anions. This substitution results in the solid solution (GeTe)x(LiSbTe2)2 (with x = n - 1, but n not necessarily an integer). For x < 6, these stable compounds crystallize in a rock-salt-type structure with random cation disorder. Neutron data show that a small fraction of Ge occupies tetrahedral voids for x = 2 and 3. For x > 6, (GeTe)x(LiSbTe2)2 forms a GeTe-type structure that shows a phase transition to a cubic high-temperature phase at ca. 280 °C. The thermoelectric properties of (GeTe)11(LiSbTe2)2 have been investigated and show that this compound is a promising thermoelectric material with a ZT value of 1.0 at 450 °C. The high ZT value of the thermodynamically stable compound is caused by a low phononic contribution to the thermal conductivity; probably, Li acts as a "pseudo-vacancy".

12.
Adv Mater ; 23(2): 285-308, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-20859941

ABSTRACT

This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching. First, the basic process and mechanism of metal-assisted chemical etching is introduced. Then, the various influences of the noble metal, the etchant, temperature, illumination, and intrinsic properties of the silicon substrate (e.g., orientation, doping type, doping level) are presented. The anisotropic and the isotropic etching behaviors of silicon under various conditions are presented. Template-based metal-assisted chemical etching methods are introduced, including templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithography, and block-copolymer masks. The metal-assisted chemical etching of other semiconductors is also introduced. A brief introduction to the application of Si nanostructures obtained by metal-assisted chemical etching is given, demonstrating the promising potential applications of metal-assisted chemical etching. Finally, some open questions in the understanding of metal-assisted chemical etching are compiled.


Subject(s)
Metals/chemistry , Nanotechnology/methods , Silicon/chemistry , Lighting , Semiconductors , Temperature
13.
Nanotechnology ; 22(1): 015605, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21135461

ABSTRACT

We present growth studies of InSb nanowires grown directly on [Formula: see text] and [Formula: see text] substrates. The nanowires were synthesized in a chemical beam epitaxy (CBE) system and are of cubic zinc blende structure. To initiate nanowire nucleation we used lithographically positioned silver (Ag) seed particles. Up to 87% of the nanowires nucleate at the lithographically pre-defined positions. Transmission electron microscopy (TEM) investigations furthermore showed that, typically, a parasitic InSb thin film forms on the substrates. This thin film is more pronounced for InSb((111)B) substrates than for InAs((111)B) substrates, where it is completely absent at low growth temperatures. Thus, using InAs((111)B) substrates and growth temperatures below 360 °C free-standing InSb nanowires can be synthesized.

14.
Opt Lett ; 35(20): 3450-2, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20967096

ABSTRACT

We present a simple setup that combines immersion lithography with a Lloyd's mirror interferometer. Aiming for smaller structure sizes, we have replaced the usual Lloyd's interferometer by a triangular Littrow prism with one metal-coated side, which acts as a mirror. Because of the higher refractive index of the prism, the wavelength and, thus, the attainable structure sizes, are decreased significantly. Using a laser with a wavelength of 244nm, we could produce line patterns with a period of less than 100nm and a width of 45nm. The introduced setup retains all the advantages of a Lloyd's mirror interferometer, in particular the flexibility in periodicity.

16.
Nanotechnology ; 21(9): 095302, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20110585

ABSTRACT

By combining laser interference lithography and metal-assisted etching we were able to produce arrays of silicon nanowires with uniform diameters as small as 65 nm and densities exceeding 2 x 10(7) mm(-2). The wires are single crystalline, vertically aligned, arranged in a square pattern and obey strict periodicity over several cm(2). The applied technique allows for a tailoring of nanowire size and density. Using a controlled and scalable process to fabricate sub-100 nm silicon nanowires is an important step towards the realization of cost-effective electronic and thermoelectric devices.

17.
Nano Lett ; 9(9): 3106-10, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19655719

ABSTRACT

An effective and low-cost method to fabricate hexagonally patterned, vertically aligned Si/Ge superlattice nanowires with diameters below 20 nm is presented. By combining the growth of Si/Ge superlattices by molecular beam epitaxy, prepatterning the substrate by anodic aluminum oxide masks, and finally metal-assisted chemical wet etching, this method generates highly ordered hexagonally patterned nanowires. This technique allows the fabrication of nanowires with a high area density of 10(10) wires/cm(2), including the control of their diameter and length.


Subject(s)
Germanium/chemistry , Nanowires/chemistry , Silicon/chemistry , Aluminum Oxide/chemistry , Membranes, Artificial , Nanotechnology , Nanowires/ultrastructure , Particle Size , Semiconductors , Silver/chemistry , Surface Properties
18.
Opt Lett ; 34(12): 1783-5, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19529702

ABSTRACT

Three-beam interference lithography is used to create hole/dot photoresist patterns with hexagonal symmetry. This is achieved by modifying a standard two-beam Lloyd's mirror interferometer into a three-beam interferometer, with the position of the mirrors chosen to guarantee 120 degrees symmetry of exposure. Compared to commonly used three-beam setups, this brings the advantage of simplified alignment, as the position of the mirrors with respect to the substrate is fixed. Pattern periodicities from several wavelengths lambda down to 2/3lambda are thus easily and continuously accessible by simply rotating the three-beam interferometer. Furthermore, in contrast to standard Lloyd's interferometers, only a single exposure is needed to create hole/dot photoresist patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...