Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler Relat Disord ; 35: 108-115, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31362166

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system. Its diagnosis is clinical, often confirmed by magnetic resonance imaging. This image modality, however, is not ideal for discrimination of demyelination in grey and white matter regions from inflammatory lesions. Positron Emission Tomography (PET), using specific radiopharmaceuticals, can be a tool to differentiate between these processes. The radiopharmaceutical [11C]PIB is widely used for detection of ß-amyloid plaques, but has also been suggested for the analysis of myelin content due to its consistent uptake in white matter. The aim of this study was to evaluate [11C]PIB PET imaging as a tool for detecting demyelinated regions in white and grey matter of non-human primate model of progressive MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in marmosets by injection of recombinant human myelin oligodendrocyte glycoprotein (rhMOG) emulsified in either Incomplete Freund's Adjuvant (IFA) or Complete Freund's Adjuvant (CFA). [11C]PIB PET images were acquired prior to immunization (baseline) and after symptoms were present (end of experiment). Brain tissue was isolated for histochemical analysis. RESULTS: All rhMOG/IFA-treated and rhMOG/CFA-treated animals showed clinical signs of EAE. The rhMOG/CFA group presented a significant [11C]PIB uptake reduction only in the left motor cortex (9%, P = 0.011). For the rhMOG/IFA group, significant decrease in [11C]PIB uptake was observed in the whole brain (15%, P = 0.015), in the right hemisphere of body of corpus callosum (34%, P = 0.02), splenium of corpus callosum (38%, P = 0.004), hippocampus (19%, P = 0.036), optic tract (13%, P = 0.025), thalamus (14%, P = 0.041), Globus pallidus (23%, P = 0.017), head of caudate nucleus (25%, P = 0.045), tail of caudate nucleus (29%, P = 0.003), putamen (28%, P = 0.047) and left hemisphere of body of corpus callosum (14%, P = 0.037) and head of caudate nucleus (23%, P = 0.023). [11C]PIB uptake significantly correlated with luxol fast blue histology (myelin marker), both in the rhMOG/IFA (r2= 0.32, P < 0.0001) and the rhMOG/CFA group (r2= 0.46, P < 0.0001). CONCLUSION: [11C]PIB PET imaging is an efficient tool for detecting demyelination in grey and white matter, in a non-human primate model of progressive MS.


Subject(s)
Aniline Compounds , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Gray Matter/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Thiazoles , White Matter/diagnostic imaging , Animals , Callithrix , Disease Models, Animal , Female , Male , Positron-Emission Tomography
2.
J Neurotrauma ; 30(6): 480-6, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23190308

ABSTRACT

Nerve-related complications have been frequently reported in dental procedures, and a very frequent type of occurrence involves the inferior alveolar nerve (IAN). The nerve injury in humans often results in persistent pain accompanied by allodynia and hyperalgesia. In this investigation, we used an experimental IAN injury in rats, which was induced by a Crile hemostatic clamp, to evaluate the effects of laser therapy on nerve repair. We also studied the nociceptive behavior (von Frey hair test) before and after the injury and the behavioral effects of treatment with laser therapy (emitting a wavelength of 904 nm, output power of 70 Wpk, a spot area of ∼0.1 cm², frequency of 9500 Hz, pulse time 60 ns and an energy density of 6 J/cm²). As neurotrophins are essential for the process of nerve regeneration, we used immunoblotting techniques to preliminarily examine the effects of laser therapy on the expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The injured animals treated with laser exhibited an improved nociceptive behavior. In irradiated animals, there was an enhanced expression of NGF (53%) and a decreased BDNF expression (40%) after laser therapy. These results indicate that BDNF plays a locally crucial role in pain-related behavior development after IAN injury, increasing after lesions (in parallel to the installation of pain behavior) and decreasing with laser therapy (in parallel to the improvement of pain behavior). On the other hand, NGF probably contributes to the repair of nerve tissue, in addition to improving the pain-related behavior.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Low-Level Light Therapy/methods , Mandibular Nerve/metabolism , Nerve Growth Factor/biosynthesis , Pain/metabolism , Trigeminal Nerve Injuries/metabolism , Animals , Male , Nerve Growth Factors/biosynthesis , Pain Management/methods , Rats , Rats, Wistar , Trigeminal Nerve Injuries/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...