Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 309(2): F146-53, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25995110

ABSTRACT

The loop diuretic furosemide inhibits NaCl reabsorption in the thick ascending limb (TAL). In addition, furosemide acidifies the urine, which is traditionally explained by increased Na+ loading to the distal tubule causing an activation of H+ secretion via H+-ATPase in α-intercalated cells. The inability to acidify urine in response to furosemide serves to diagnose distal renal tubular acidosis (dysfunction of α-intercalated cells). Since the TAL is important for acid/base regulation, we speculated that it is involved in furosemide-induced urinary acidification. Luminal furosemide (100 µM) caused major, stable, and reversible intracellular alkalization (7.27 ± 0.06 to 7.6 ± 0.04) in isolated perfused murine medullary TAL and pronounced H+ secretion. This H+ secretion was fully inhibited with luminal amiloride (1 mM) and the Na+/H+ exchanger (NHE)3-specific antagonist #4167 (1 µM). Moreover, furosemide triggered a substantial drop of intracellular Na+ concentration in the medullary TAL. These results suggest that the furosemide-induced H+ secretion is a consequence of a drop in intracellular Na+ concentration, increasing the driving force for NHE3. Intriguingly, in whole animal experiments, furosemide-induced urinary acidification and net acid excretion were markedly reduced by specific NHE3 inhibition. Furthermore, the furosemide-induced urinary acidification was partially preserved during epithelial Na+ channel inhibition with benzamil. These results provide new insights in the mechanism of furosemide-induced urinary acidification and emphasize the role of the TAL in renal acid/base handling.


Subject(s)
Furosemide/pharmacology , Loop of Henle/drug effects , Protons , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Urine/chemistry , Acidosis, Renal Tubular/diagnosis , Amiloride , Animals , Epithelial Sodium Channels/metabolism , Hydrogen-Ion Concentration , In Vitro Techniques , Loop of Henle/metabolism , Mice , Sodium/metabolism , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/antagonists & inhibitors
2.
Am J Physiol Renal Physiol ; 302(4): F487-94, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22114208

ABSTRACT

Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (mTAL) including luminal and basolateral P2Y(2) receptors (Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J. J Am Soc Nephrol 18: 2062-2070, 2007). In addition, we found evidence for a basolateral P2X receptor. Here, we investigate the effect of basolateral ATP on NaCl absorption in isolated, perfused mouse mTALs using the electrical measurement of equivalent short-circuit current (I'(sc)). Nonstimulated mTALs transported at a rate of 1,197 ± 104 µA/cm(2) (n = 10), which was completely blockable with luminal furosemide (100 µM). Basolateral ATP (100 µM) acutely (1 min) and reversibly reduced the absorptive I'(sc). After 2 min, the reduction amounted to 24.4 ± 4.0% (n = 10). The nonselective P2 receptor antagonist suramin blocked the effect. P2Y receptors were found not to be involved in this effect. The P2X receptor agonist 2-methylthio ATP mimicked the ATP effect, and the P2X receptor antagonist periodate-oxidized ATP blocked it. In P2X(7)(-/-) mice, the ATP effect remained unaltered. In contrast, in P2X(4)(-/-) mice the ATP-induced inhibition of transport was reduced. A comprehensive molecular search identified P2X(4), P2X(5), and P2X(1) receptor subunit mRNA in isolated mouse mTALs. These data define that basolateral ATP exerts a significant inhibition of Na(+) absorption in mouse mTAL. Pharmacological, molecular, and knockout mouse data identify a role for the P2X(4) receptor. We suggest that other P2X subunits like P2X(5) are part of the P2X receptor complex. These data provide the novel perspective that an ionotropic receptor and thus a nonselective cation channel causes transport inhibition in an intact renal epithelium.


Subject(s)
Ion Transport/physiology , Loop of Henle/metabolism , Receptors, Purinergic P2X/metabolism , Sodium Chloride/metabolism , Adenosine Triphosphate/pharmacology , Animals , Female , Loop of Henle/drug effects , Male , Mice , Mice, Knockout , Receptors, Purinergic P2X/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...