Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Annu Rev Phytopathol ; 37: 81-125, 1999.
Article in English | MEDLINE | ID: mdl-11701818

ABSTRACT

The advent of molecular biology in general and the polymerase chain reaction in particular have greatly facilitated genomic analyses of microorganisms, provide enhanced capability to characterize and classify strains, and facilitate research to assess the genetic diversity of populations. The diversity of large populations can be assessed in a relatively efficient manner using rep-PCR-, AFLP-, and AP-PCR/RAPD-based genomic fingerprinting methods, especially when combined with computer-assisted pattern analysis. Genetic diversity maps provide a framework to understand the taxonomy, population structure, and dynamics of phytobacteria and provide a high-resolution framework to devise sensitive, specific, and rapid methods for pathogen detection, plant disease diagnosis, as well as management of disease risk. A variety of PCR-based fingerprinting protocols such as rDNA-based PCR, ITS-PCR, ARDRA, T-RFLPs, and tRNA-PCR have been devised, and numerous innovative approaches using specific primers have been adopted to enhance both the detection and identification of phytobacteria. PCR-based protocols, combined with computer-based analysis, have provided novel fundamental knowledge of the ecology and population dynamics of bacterial pathogens, and present exciting new opportunities for basic and applied studies in plant pathology.

3.
Appl Environ Microbiol ; 64(12): 4944-9, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9835587

ABSTRACT

Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

4.
Appl Environ Microbiol ; 64(10): 3954-60, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9758825

ABSTRACT

Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild-type strain, their rhizosphere counts were reduced more than 50% (P

5.
Plant Cell ; 10(10): 1585-602, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9761788

ABSTRACT

The early nodulin Enod2 gene encodes a putative hydroxyproline-rich cell wall protein and is expressed exclusively in the nodule parenchyma cell layer. The latter finding suggests that the Enod2 protein may contribute to the special morphological features of the nodule parenchyma and to the creation of an oxygen diffusion barrier. The Enod2 gene of the stem-nodulating legume Sesbania rostrata (SrEnod2) is induced specifically in roots by the plant hormone cytokinin, and this induction occurs at a post-transcriptional level. Here, we characterize the cis determinant(s) in the SrEnod2 locus responsible for nodule parenchyma-specific expression and show that the 3' untranslated region (UTR) of the SrEnod2 gene is both required and sufficient for directing chimeric reporter gene expression in the nodule parenchyma of transgenic Lotus corniculatus plants. Moreover, we show that the SrEnod2 3' UTR does not act as a tissue-specific enhancer element. By conducting a detailed deletion analysis of the 5' and 3' SrEnod2 regions, we delimited the minimal promoter of the SrEnod2 gene, and it appears that the 5' flanking sequences are not essential for nodule parenchyma-specific expression. This finding is in contrast with the report that the 5' upstream region of the soybean Enod2 gene directs nodule parenchyma-specific expression, indicating that different mechanisms may be involved in regulating the expression of these two genes. We definitively demonstrate that the cis element(s) for tissue-specific expression is located within the 3' UTR of a plant nuclear gene.

SELECTION OF CITATIONS
SEARCH DETAIL
...