Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Chemistry ; 26(71): 17128-17133, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33200852

ABSTRACT

The application of double electron-electron resonance (DEER) with site-directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin-label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two-armed GdIII complexes, GdIII -CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.


Subject(s)
Dictyostelium , Gadolinium , Electron Spin Resonance Spectroscopy , Proteins/chemistry , Spin Labels
3.
J Nanobiotechnology ; 16(1): 37, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29622040

ABSTRACT

BACKGROUND: Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. RESULTS: We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. CONCLUSION: The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.


Subject(s)
DNA/analysis , Nucleic Acid Hybridization/methods , Oligonucleotides/therapeutic use , Silver/chemistry , DNA Probes/metabolism , Spectrometry, Fluorescence
5.
Sci Rep ; 6: 37897, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27901090

ABSTRACT

DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.


Subject(s)
Fluorescent Dyes/administration & dosage , Metal Nanoparticles/administration & dosage , Silver/administration & dosage , Biosensing Techniques/methods , Cells, Cultured , DNA, Single-Stranded/genetics , Dictyostelium/drug effects , Fluorescence , Nanostructures/administration & dosage , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...