Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 468-469: 31-45, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23999159

ABSTRACT

In order to simulate the long-term (months-years) median Escherichia coli distributions and variations in the tidal Scheldt River and Estuary, a dedicated module was developed for the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM, www.climate.be/slim). The resulting model (SLIM-EC2) presents two specific and new features compared to the older SLIM-EC model version. The first is that the E. coli concentrations in the river are split in three fractions: the free E. coli in the water column, the ones attached to suspended solids and those present in the bottom sediments, each with their own transport, decay and settling-resuspension dynamics. The bacteria attached to particles can settle and survive on the bottom, where they can be brought back in the water column during resuspension events. The second new feature of the model is that it is coupled to the catchment model SENEQUE-EC, which thus provides upstream boundary conditions to SLIM-EC2. The result is an integrated and multi-scale model of the whole Scheldt drainage network from its source down to the Belgian/Dutch coastal zone. This new model reproduces the long-term median E. coli concentration along the Scheldt River and Estuary. An extensive sensitivity study is performed demonstrating the relative robustness of the model with respect to the chosen parameterisations. In addition to reproducing the observed E. coli concentrations in 2007-2008 at various stations, two extreme wastewater management scenarios were considered. Overall, there is no doubt that the Scheldt Estuary acts as a cleaning filter of faecal contamination originating from large Belgian cities. As a result, at the mouth of the Scheldt Estuary E. coli concentration is negligible in all investigated conditions.


Subject(s)
Environmental Monitoring/methods , Estuaries , Feces/microbiology , Models, Biological , Rivers/microbiology , Water Microbiology , Water Pollution/statistics & numerical data , Belgium , Escherichia coli/isolation & purification , Geologic Sediments/microbiology
2.
Water Res ; 45(9): 2724-38, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21435674

ABSTRACT

Recent observations in the tidal Scheldt River and Estuary revealed a poor microbiological water quality and substantial variability of this quality which can hardly be assigned to a single factor. To assess the importance of tides, river discharge, point sources, upstream concentrations, mortality and settling a new model (SLIM-EC) was built. This model was first validated by comparison with the available field measurements of Escherichia coli (E. coli, a common fecal bacterial indicator) concentrations. The model simulations agreed well with the observations, and in particular were able to reproduce the observed long-term median concentrations and variability. Next, the model was used to perform sensitivity runs in which one process/forcing was removed at a time. These simulations revealed that the tide, upstream concentrations and the mortality process are the primary factors controlling the long-term median E. coli concentrations and the observed variability. The tide is crucial to explain the increased concentrations upstream of important inputs, as well as a generally increased variability. Remarkably, the wastewater treatment plants discharging in the study domain do not seem to have a significant impact. This is due to a dilution effect, and to the fact that the concentrations coming from upstream (where large cities are located) are high. Overall, the settling process as it is presently described in the model does not significantly affect the simulated E. coli concentrations.


Subject(s)
Environmental Monitoring/methods , Escherichia coli/growth & development , Models, Biological , Rivers/microbiology , Water Microbiology , Water Pollution/statistics & numerical data , Hydrodynamics , Rivers/chemistry , Tidal Waves , Waste Disposal, Fluid , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...