Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 52(4): 2475-2482, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562234

ABSTRACT

Bufotenine, an alkaloid that can be found in plant extracts and skin secretions of amphibians, is reported to have potential antiviral activity. The present study evaluated the antiviral activity of bufotenine against different genetic lineages of rabies virus (RABV, a single-stranded, negative-sense RNA virus), canine coronavirus (CCoV, a positive-sense RNA virus) and two double-stranded DNA viruses (two strains of herpes simplex virus type 1/HSV-1 [KOS and the acyclovir-resistant HSV-1 strain 29R] and canine adenovirus 2, CAV-2). The maximal non-toxic bufotenine concentrations in Vero and BHK-21 cells were determined by MTT assays. The antiviral activity of bufotenine against each virus was assessed by examination of reductions in infectious virus titres and plaque assays. All experiments were performed with and without bufotenine, and the results were compared. Bufotenine demonstrated significant RABV inhibitory activity. No antiviral action was observed against CCoV, CAV-2 or HSV-1. These findings indicate that the antiviral activity of bufotenine is somewhat linked to the particular infectious dose used and the genetic lineage of the virus, although the mechanisms of its effects remain undetermined.


Subject(s)
Antiviral Agents , Bufotenin , DNA Viruses/drug effects , RNA Viruses/drug effects , Animals , Antiviral Agents/pharmacology , Bufotenin/pharmacology , Chlorocebus aethiops , Cricetinae , Vero Cells
2.
Transbound Emerg Dis ; 67(2): 906-913, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31698530

ABSTRACT

The sylvatic cycle of rabies, caused by the Rabies lyssavirus (RABV), is maintained in the American Continent by aerial and terrestrial wild mammals. In this study, we combined passive surveillance of rescued wild animals with active serological surveillance in targeting areas at Rio Grande do Sul State and Santa Catarina State, south of Brazil, where bites of humans by wild animals have been reported. Circulation of RABV in Brazilian bats has been extensively demonstrated; however, the observation of such infections in unvaccinated terrestrial mammals is restricted to some regions of the Brazilian territory. The occurrence of rabies infection in unvaccinated animals has been identified by the detection of RABV antigens in brain tissues of dead animals or anti-rabies antibodies in live animals. Such strategies allow the surveillance of rabies and the assessment of spillover risks from infected animals to humans. Our aim included the identification of species of wild mammals that are involved in the sylvatic cycle of rabies virus in Southern Brazil and to assess the risk of rabies infection in patients bitten by wild animals in the state. To assess the anti-rabies seropositivity, sera were submitted to the Rapid Fluorescent Focus Inhibition Test (RFFIT). Among the 100 mammals tested, five animals were seropositive (5%) including three (one primate and two wild canids) with rabies virus neutralizing antibodies titres >0.5 IU/ml. Our results highlight the exposure to RABV of both primates and wild canids in Southern Brazil and suggest the occurrence of RABV exposure without the development of further symptoms. Further research should clarify the dynamics of rabies in wild canids and whether primates are accidental hosts or reservoirs for RABV at this region.


Subject(s)
Chiroptera/virology , Rabies virus/isolation & purification , Rabies/veterinary , Animals , Animals, Wild , Brazil/epidemiology , Female , Humans , Male , Mammals , Rabies/epidemiology , Rabies/virology
3.
J Immunol Methods ; 471: 1-10, 2019 08.
Article in English | MEDLINE | ID: mdl-30904384

ABSTRACT

Polyclonal or monoclonal antibodies against rabies virus ribonucleoprotein (RNP) conjugated to fluorescein isothiocyanate (FITC) have been employed for Rabies virus (RABV) antigen detection by the direct fluorescent antibody test (DFA). To date, these biomolecules have been purified by traditional methods such as precipitation by ammonium sulfate or ion exchange chromatography followed by ammonium sulfate precipitation, which allows only for partial detection of the protein of interest. In this study, we aimed to purify anti-RNP polyclonal horse IgG antibodies by cation-exchange chromatography in combination with a homemade immunoaffinity chromatography on RNP immobilized (RNP-IAC). Furthermore, to evaluate the accuracy of the prepared anti-RNP IgG fluorescent antibody in diagnostic purposes, DFA was applied for RABV antigen detection in suspected brain samples of different animal species. The combination of these two techniques made it possible to obtain antibodies with high selectivity and purity. Compared with the performance of the traditional method, anti-RNP IgG antibodies purified by RNP-IAC can be obtained from a smaller volume of hyperimmune serum and with greater avidity. Furthermore, the results obtained by DFA analyses revealed that the prepared anti-RNP IgG fluorescent antibody achieved 100% diagnostic specificity and sensitivity for RABV antigen detection. Thus, two-technique chromatographic, including RNP-IAC technology could be appropriate methods for the purification of polyclonal anti-RNP IgG for the use as a diagnostic reagent for rabies.


Subject(s)
Antibodies, Antinuclear/immunology , Chromatography, Affinity/methods , Immunoglobulin G/immunology , Rabies virus/immunology , Rabies/diagnosis , Ribonucleoproteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cats , Cattle , Cell Line , Chiroptera , Dogs , Haplorhini , Horses , Rabies/immunology , Rabies/virology , Rabies virus/physiology , Sensitivity and Specificity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...