Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150031

ABSTRACT

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Subject(s)
Hydroxychloroquine , Quality of Life , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Cytokines , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphatidate Phosphatase/genetics
3.
Nat Commun ; 14(1): 342, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670122

ABSTRACT

Amyotrophic lateral sclerosis (ALS) has substantial heritability, in part shared with fronto-temporal dementia (FTD). We show that ALS heritability is enriched in splicing variants and in binding sites of 6 RNA-binding proteins including TDP-43 and FUS. A transcriptome wide association study (TWAS) identified 6 loci associated with ALS, including in NUP50 encoding for the nucleopore basket protein NUP50. Independently, rare variants in NUP50 were associated with ALS risk (P = 3.71.10-03; odds ratio = 3.29; 95%CI, 1.37 to 7.87) in a cohort of 9,390 ALS/FTD patients and 4,594 controls. Cells from one patient carrying a NUP50 frameshift mutation displayed a decreased level of NUP50. Loss of NUP50 leads to death of cultured neurons, and motor defects in Drosophila and zebrafish. Thus, our study identifies alterations in splicing in neurons as critical in ALS and provides genetic evidence linking nuclear pore defects to ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Zebrafish/metabolism , Neurons/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Mutation
4.
Autophagy ; 18(2): 254-282, 2022 02.
Article in English | MEDLINE | ID: mdl-34057020

ABSTRACT

Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , Autophagy/physiology , Frontotemporal Dementia/genetics , Humans , Proteostasis , Unfolded Protein Response
5.
J Vis Exp ; (176)2021 10 19.
Article in English | MEDLINE | ID: mdl-34747399

ABSTRACT

Epilepsy represents one of the most common neurological disorders, affecting an estimated 50 million people worldwide. Recent advances in genetic research have uncovered a large spectrum of genes implicated in various forms of epilepsy, highlighting the heterogeneous nature of this disorder. Appropriate animal models are essential for investigating the pathological mechanisms triggered by genetic mutations implicated in epilepsy and for developing specialized, targeted therapies. In recent years, zebrafish has emerged as a valuable vertebrate organism for modeling epilepsies, with the use of both genetic manipulation and exposure to known epileptogenic drugs, such as pentylenetetrazole (PTZ), to identify novel anti-epileptic therapeutics. Deleterious mutations in the mTOR regulator DEPDC5 have been associated with various forms of focal epilepsies and knock-down of the zebrafish orthologue causes hyperactivity associated with spontaneous seizure-like episodes, as well as enhanced electrographic activity and characteristic turn wheel swimming. Here, we described the method involved in generating the DEPDC5 loss-of-function model and illustrate the protocol for assessing motor activity at 28 and 48 h post fertilization (hpf), as well as a method for recording field activity in the zebrafish optic tectum. An illustration of the effect of the epileptogenic drug PTZ on neuronal activity over time is also provided.


Subject(s)
Epilepsy , Zebrafish , Animals , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Pentylenetetrazole/therapeutic use , Seizures/pathology , Zebrafish/genetics
6.
Ann Clin Transl Neurol ; 5(5): 510-523, 2018 May.
Article in English | MEDLINE | ID: mdl-29761115

ABSTRACT

OBJECTIVE: DEPDC5 was identified as a major genetic cause of focal epilepsy with deleterious mutations found in a wide range of inherited forms of focal epilepsy, associated with malformation of cortical development in certain cases. Identification of frameshift, truncation, and deletion mutations implicates haploinsufficiency of DEPDC5 in the etiology of focal epilepsy. DEPDC5 is a component of the GATOR1 complex, acting as a negative regulator of mTOR signaling. METHODS: Zebrafish represents a vertebrate model suitable for genetic analysis and drug screening in epilepsy-related disorders. In this study, we defined the expression of depdc5 during development and established an epilepsy model with reduced Depdc5 expression. RESULTS: Here we report a zebrafish model of Depdc5 loss-of-function that displays a measurable behavioral phenotype, including hyperkinesia, circular swimming, and increased neuronal activity. These phenotypic features persisted throughout embryonic development and were significantly reduced upon treatment with the mTORC1 inhibitor, rapamycin, as well as overexpression of human WT DEPDC5 transcript. No phenotypic rescue was obtained upon expression of epilepsy-associated DEPDC5 mutations (p.Arg487* and p.Arg485Gln), indicating that these mutations cause a loss of function of the protein. INTERPRETATION: This study demonstrates that Depdc5 knockdown leads to early-onset phenotypic features related to motor and neuronal hyperactivity. Restoration of phenotypic features by WT but not epilepsy-associated Depdc5 mutants, as well as by mTORC1 inhibition confirm the role of Depdc5 in the mTORC1-dependent molecular cascades, defining this pathway as a potential therapeutic target for DEPDC5-inherited forms of focal epilepsy.

7.
Hum Mol Genet ; 24(6): 1682-90, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25410659

ABSTRACT

Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Lobar Degeneration/genetics , Locomotion/genetics , Sirolimus/pharmacology , Zebrafish Proteins/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Disease Models, Animal , Frontotemporal Lobar Degeneration/drug therapy , Gene Knockdown Techniques , Locomotion/drug effects , Phenotype , Sequestosome-1 Protein , TOR Serine-Threonine Kinases/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...