Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14102, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38890338

ABSTRACT

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers. However, theoretical considerations predict both higher and lower trophic position with increasing body size. Nitrogen stable isotope values (δ15N) are increasingly replacing stomach contents or behavioral observations to assess trophic position and it is often assumed that ontogenetic dietary shifts result in higher trophic positions. Intraspecific studies based on δ15N values found a positive relationship between size and inferred trophic position. Here, we use datasets of predatory vertebrate ectotherms (crocodilians, turtles, lizards and fishes) to show that, although there are positive intraspecific relationships between size and δ15N values, relationships between stomach-content-based trophic level (TPdiet) and size are undetectable or negative. As there is usually no single value for 15N trophic discrimination factor (TDF) applicable to a predator species or its prey, estimates of trophic position based on δ15N in ectotherm vertebrates with large size ranges, may be inaccurate and biased. We urge a reconsideration of the sole use of δ15N values to assess trophic position and encourage the combined use of isotopes and stomach contents to assess diet and trophic level.


Subject(s)
Body Size , Food Chain , Nitrogen Isotopes , Predatory Behavior , Vertebrates , Animals , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Predatory Behavior/physiology , Lizards/physiology , Lizards/metabolism , Fishes/physiology , Gastrointestinal Contents/chemistry , Turtles/physiology , Turtles/metabolism
2.
Environ Res ; 237(Pt 1): 116889, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37595826

ABSTRACT

Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.

3.
Nature ; 617(7959): 111-117, 2023 05.
Article in English | MEDLINE | ID: mdl-37100901

ABSTRACT

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Subject(s)
Carbon , Forests , Trees , Tropical Climate , Biomass , Carbon/metabolism , Droughts , Trees/growth & development , Trees/metabolism , Xylem/metabolism , Rain , Climate Change , Carbon Sequestration , Stress, Physiological , Dehydration
4.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Article in English | MEDLINE | ID: mdl-36896778

ABSTRACT

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Subject(s)
Microbiota , Soil , Soil/chemistry , Methane/metabolism , Forests , Genes, Bacterial , Microbiota/genetics , Soil Microbiology
5.
Sci Total Environ ; 872: 162234, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36791854

ABSTRACT

Complexation of dissolved organic matter (DOM) with cations and minerals contributes to the stabilization of carbon in soils, and can enable the transport of metals in the environment. Hence, a proper understanding of mechanisms that control DOM binding properties in the soil is important for major environmental challenges, such as climate change and stream pollution. However, the role of DOM source in those mechanisms remains understudied. Here, we consider poorly drained tropical Podzols as a model environment to isolate effects of aluminium and DOM on sorption and desorption processes in podzolisation. We collected E- and Bh-horizons from a Brazilian coastal Podzol under tropical rainforest to conduct a column experiment, and percolated the columns with DOM collected from a stream (Stream), peat water (Peat), litter (Litter) and charred litter (Char). To quantify sorption and desorption from the columns, leachates were analysed for DOC content, aluminium content, pH, and the amount of fulvic acid relative to humic acid. The results showed large differences in DOC retention between DOM-types, which were consistent over all columns. Retention of DOC in the column varied between 25 % and 92 % for DOM-type Stream, between 33 % and 63 % for DOM-type Peat, between 22 % and 47 % for DOM-type Litter, and between 8 % and 49 % for DOM-type Char. Similarly, desorption from columns with B-horizon material highly differed between DOM-types. Percolation with DOM-types Stream and Peat caused a release of native DOC from B columns that was higher than in those percolated with water only. On the other hand, percolation of B columns with DOM-types Litter and Char caused a net DOC retention. These differences reflect that certain DOM-types hindered desorption, while other DOM-types caused active desorption. The large differences in sorption/desorption between DOM-types implies that changes in environmental conditions may highly influence the fate of soil carbon in Podzols.

6.
Sci Total Environ ; 851(Pt 1): 158052, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988596

ABSTRACT

This study brings information on the dynamics of C and N in urban forests in a subtropical region. We tested the hypothesis that C and N isotopic sign of leaves and soil and physiological traits of trees would vary from center to periphery in a megacity, considering land uses, intensity of automotive fleet and microclimatic conditions. 800 trees from four fragments were randomly chosen. Soil samples were collected at every 10 cm in trenches up to 1 m depth to analyze C and N contents. Both, plants and soil were assessed for δ13C, δ15N, %C and %N. Physiological traits [carbon assimilation (A)], CO2 internal and external pressure ratio (Pi/Pa) and intrinsic water use efficiency iWUE were estimated from δ13C and Δ Î´13C in leaves and soil ranged from -27.42 ‰ to -35.39 ‰ and from -21.22 ‰ to -28.18 ‰, respectively, and did not vary along the areas. Center-periphery gradient was not evidenced by C. Emissions derived from fossil fuel and distinct land uses interfered at different levels in δ13C signature. δ15N in the canopy and soil varied clearly among urban forests, following center-periphery gradient. Leaf δ15N decreased from the nearest forest to the city center to the farthest, ranging from <3 ‰ to <-3 ‰. δ15N was a good indicator of atmospheric contamination by NOx emitted by vehicular fleet and a reliable predictor of land use change. %N followed the same trend of δ15N either for soils or leaves. Forest fragments located at the edges of the center-periphery gradient presented significantly lower A and Pi/Pa ratio and higher iWUE. These distinct physiological traits were attributed to successional stage and microclimatic conditions. Results suggest that ecosystem processes related to C and N and ecophysiological responses of urban forests vary according to land use and vehicular fleet.


Subject(s)
Ecosystem , Soil , Carbon , Carbon Dioxide , Forests , Fossil Fuels , Plants , Trees , Water
7.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35759674

ABSTRACT

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Subject(s)
Anthropogenic Effects , Biodiversity , Conservation of Natural Resources , Rainforest , Agriculture , Brazil , Carbon , Humans
8.
Environ Monit Assess ; 193(12): 789, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34757510

ABSTRACT

Rainfall is generally partitioned into throughfall, stemflow, and interception in ecosystems. Stemflow variability can affect the hydrology, ecology, and soil chemistry patterns. However, the influence of canopy structure and rainfall characteristics on stemflow production in sugarcane plantations which are important for renewable energy production remain poorly understood. By using funnels attached to the sugarcane stems, the present study determined the stemflow amount during the period of sugarcane growth and its relationship with plant development. Approximately, 14% of gross rainfall reached the soil as stemflow, and the funneling ratios was 60. In general, it was observed a positive relationship between stemflow rates with both leaf area index and plant height. This was attributed to an increasing number of acute branching angles of the sugarcane leaves as well as high stem tillering and density. However, at the end of growth cycle, stemflow rate was lower than in previous periods which can be attributed to changes in sugarcane canopy such as stems inclination and lodging, reducing the effectiveness of water conveyance along the stem. Our study showed the need to include stemflow to better understand the hydrology of sugarcane plantations.


Subject(s)
Rain , Saccharum , Ecosystem , Environmental Monitoring , Soil , Trees
9.
Sci Total Environ ; 773: 145066, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582326

ABSTRACT

Biological nitrogen fixation is a key process for the maintenance of natural ecosystems productivity. In tropical forests, the contribution of asymbiotic nitrogen fixation (ANF) to the nitrogen (N) input has been underestimated, even though few studies have shown that ANF may be as important as symbiotic nitrogen fixation in such environments. The inputs and abiotic modulators of ANF in the Amazon forest are not completely understood. Here, we determined ANF rates and estimated the N inputs from ANF in the phyllosphere, litter and rhizospheric soil of nine tree species in the Amazon forest over time, including an extreme drought period induced by the El Niño-Southern Oscillation. Our data showed that ANF rates in the phyllosphere were 2.8- and 17.6-fold higher than in the litter and rhizospheric soil, respectively, and was highly dependent on tree taxon. Sampling time was the major factor modulating ANF in all forest compartments. At the driest period, ANF rates were approximately 1.8-fold and 13.1-fold higher than at periods with higher rainfall, before and after the extreme drought period, respectively. Tree species was a key modulator of ANF in the phyllosphere, as well as N and Vanadium concentrations. Carbon, molybdenum and vanadium concentrations were significant modulators of ANF in the litter. Based on ANF rates at the three sampling times, we estimated that the N input in the Amazon forest through ANF in the phyllosphere, litter and rhizospheric soil, was between 0.459 and 0.714 kg N ha-1 yr-1. Our results highlight the importance of ANF in the phyllosphere for the N input in the Amazon forest, and suggest that changes in the patterns of ANF driven by large scale climatic events may impact total N inputs and likely alter forest productivity.


Subject(s)
Ecosystem , Nitrogen Fixation , Forests , Nitrogen , Soil , Trees
10.
ISME J ; 15(3): 658-672, 2021 03.
Article in English | MEDLINE | ID: mdl-33082572

ABSTRACT

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


Subject(s)
Rainforest , Soil , Brazil , Methane , Soil Microbiology
11.
Environ Monit Assess ; 193(1): 3, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33300102

ABSTRACT

We investigated the fluvial geochemistry of two catchments at different stages in the forest recovery process which have been a focus of an Environmental Services Payment (ESP) program in Brazil. The Posses (PS) and Salto de Cima (SC) catchments (1200 ha and 1500 ha, respectively) are situated in the municipality of Extrema, Minas Gerais state. Their streams flow into the Jaguari River that supplies part of the water demand of the São Paulo metropolitan area. Samples were collected for chemical analysis and physical-chemical field measures every 2 weeks from January to December 2017. An important pollution point source was discovered in the PS stream related to bovine urine and feces, as well another unidentified source that can be related to a small food processing industry and/or a small fish farm. At the SC stream, on the other hand, there was clear evidence of domestic sewage input. This preliminary study confirmed a limited improvement of the stream water quality in response to recovery of the forest vegetation. Therefore, we recommend that in addition to enhanced monitoring to help distinguish biogeochemical sources and the benefits of land conservation practices, the ESP program should consider controlling point source pollution to accomplish its purpose.


Subject(s)
Environmental Monitoring , Forests , Animals , Brazil , Cattle , Cities , Rivers
12.
Nat Plants ; 6(10): 1225-1230, 2020 10.
Article in English | MEDLINE | ID: mdl-33051618

ABSTRACT

Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.


Subject(s)
Photosynthesis , Trees/physiology , Atmospheric Pressure , Climate Change , Ecosystem , Humidity , Rainforest , Temperature , Tropical Climate
13.
Environ Int ; 145: 106131, 2020 12.
Article in English | MEDLINE | ID: mdl-32979812

ABSTRACT

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 µg CH4 m-2 d-1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 µg CH4 m-2 d-1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: -10.2 ± 35.7 µg CH4 m-2 d-1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.


Subject(s)
Methane , Soil , Animals , Brazil , Cattle , Forests , Soil Microbiology
14.
Zoology (Jena) ; 141: 125812, 2020 08.
Article in English | MEDLINE | ID: mdl-32634705

ABSTRACT

Snakes are a useful model for ecological studies because they are gape-limited predators that may undergo ontogenetic changes in diet. We analyzed carbon and nitrogen stable isotope ratios to estimate percent contributions of different prey to snake biomass, trophic positions and isotopic niche width of juveniles and adults of the snake Thamnodynastes hypoconia. We also estimated the isotopic niche overlap between the two age categories. During eight intervals over a two-year period, we collected samples of whole blood and scales at a site in southern Brazil. Isotopic ratios of carbon and nitrogen did not differ between juveniles and adults for either tissue type, nor did mean trophic positions of juveniles and adults differ. The percent contribution of prey categories to snake biomass differed to a limited extent between the two years, with Hylidae being the most important anuran group assimilated during the first year and Leptodactylidae during the second year, for both ages. The isotopic niche occupied by adult snakes was slightly larger than that of juveniles when the analysis was based on data from whole blood samples, as expected because snakes are gape-limited. We found a reverse pattern when the analysis was based on scales, which may indicate that adult snakes have a smaller niche over the long term as they become selective foragers in certain prey. Isotopic overlap between juveniles and adults occurred during the two years, but it was bigger during the second year. We infer that, despite differences in gape size, juvenile and adult snakes in the study area exploit similar prey, with the degree of trophic similarity varying interannually.


Subject(s)
Carbon Isotopes , Ecosystem , Nitrogen Isotopes , Snakes/metabolism , Animals , Brazil , Diet , Feeding Behavior
15.
Am J Phys Anthropol ; 172(4): 650-663, 2020 08.
Article in English | MEDLINE | ID: mdl-32491211

ABSTRACT

OBJECTIVE: The main objective of this study is to investigate diet patterns among rural and urban populations of the Center-West, Northeast, and Amazon regions of Brazil through the carbon and nitrogen isotopic composition of fingernails, recognizing that the extent of market integration is a key driver of food consumption. MATERIALS AND METHODS: In the Center-West, Northeast, and Amazon regions of Brazil, fingernails were sampled in clusters encompassing a major city, town, and rural village. A total of 2,133 fingernails were analyzed. Fingernails were clipped by donors using fingernail clippers. In the laboratory, samples were cleaned then weighed in small tin capsules before being isotopically analyzed for carbon and nitrogen. RESULTS: The overall mean δ13 C and δ15 N were -19.7 ± 2.8‰ and 10.6 ± 1.1‰, respectively. In the more remote villages, where access to food markets is more challenging, lower δ13 C prevails, suggesting that Brazilian staple foods (rice, beans, and farinha) still dominate. In areas with easier access to food markets, δ13 C values were higher, suggesting a change to a diet based on C4 plants, typical of a Brazilian supermarket diet. The variability among inhabitants in the same location expressed by a significant inverse correlation between δ13 C and δ15 N fingernail values suggested that "market integration" does not affect everyone equally in each community. DISCUSSION AND CONCLUSION: The nutrition transition has not yet reached some remote villages in these regions of Brazil or that the nutrition transition has not yet reached all residents of these remote villages. On the other hand, in several villages there is a considerable adherence to the supermarket diet or that some residents of these villages are already favoring processed food.


Subject(s)
Carbon Isotopes/analysis , Diet/statistics & numerical data , Nails/chemistry , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Adult , Anthropology, Physical , Brazil , Female , Humans , Male , Middle Aged , Nitrogen Isotopes/analysis , Young Adult
16.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Article in English | MEDLINE | ID: mdl-31712699

ABSTRACT

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Subject(s)
Ecosystem , Wood , Forests , Phylogeny , Tropical Climate
17.
New Phytol ; 222(3): 1284-1297, 2019 05.
Article in English | MEDLINE | ID: mdl-30720871

ABSTRACT

Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine-scale observations critical to revealing ecological mechanisms underlying these changes have been lacking. To investigate fine-scale variation in leaf area with seasonality and drought we conducted monthly ground-based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structured LAI along axes of both canopy height and light environments. Upper canopy LAI increased during the dry season, whereas lower canopy LAI decreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understory LAI increased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015-2016 severe El Niño drought. Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.


Subject(s)
Droughts , Forests , Light , Plant Leaves/anatomy & histology , Plant Leaves/radiation effects , Seasons , Brazil , El Nino-Southern Oscillation
18.
Mar Environ Res ; 144: 72-83, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30600094

ABSTRACT

Mangroves have a relevant ecosystem function due to their efficiency in blue carbon sequestration. Autotrophic carbon conservation in mangroves remains controversial. In this sense, autotrophic nutrient assimilation by crabs can highlight their ecosystem function. This study aims to identify the relationship between quality sources and food partitioning in two leaf-eating crabs, Ucides cordatus and Goniopsis cruentata. Quantification of the litterfall biomass, analysis of the soil, the C/N ratio and stable isotopes (δ13C and δ15N) were used to evaluate food sources and crab tissues in two mangrove forests. The litterfall and soil C contents and C/N ratios of the Pacoti River (PR) were higher than those of the Jaguaribe River. The higher C/N ratios of the litterfall of the PR led to higher nitrogen ingestion from complementary food sources (soil and omnivorous invertebrates). The nutritional requirements and food partitioning behavior of both species emphasize the ecosystem functions of leaf-eating crabs concerning the assimilation and conservation of autotrophic carbon and nitrogen in mangroves.


Subject(s)
Brachyura , Food Chain , Plant Leaves , Animals , Avicennia , Brazil , Carbon Isotopes/analysis , Invertebrates , Nitrogen Isotopes/analysis , Rhizophoraceae , Rivers , Wetlands
19.
New Phytol ; 220(2): 435-446, 2018 10.
Article in English | MEDLINE | ID: mdl-29974469

ABSTRACT

The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.


Subject(s)
Butadienes/analysis , Climate Change , Hemiterpenes/analysis , Phylogeny , Trees/physiology , Tropical Climate , Forests , Time Factors
20.
New Phytol ; 219(3): 870-884, 2018 08.
Article in English | MEDLINE | ID: mdl-29502356

ABSTRACT

Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.


Subject(s)
Carbon/metabolism , Forests , Plant Leaves/physiology , Seasons , Brazil , Chlorophyll/metabolism , Gases/metabolism , Photosynthesis , Plant Stomata/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...