Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 11(6): 1470-1477, 2017 12.
Article in English | MEDLINE | ID: mdl-29293428

ABSTRACT

In this paper, we further investigate the properties of off-stoichiometry thiol-ene polymers (OSTE) aiming its application in microchip electrophoresis for bioanalytical applications. The proportion of 1.3:1 (allyl:thiol) and 1:2.5 (allyl:thiol) presented the best results in terms of sealing. Raman imaging mapping of the polymers surfaces revealed an outstanding homogeneity. Water contact angle were measured as 68° ± 6° and 71° ± 5° for 1.3:1 allyl and 1:2.5 thiol, respectively. Substrates prepared with OSTE demonstrated to be less prone to sorption of nonpolar compounds. The electroosmotic flow measured for this OSTE composition was 3.8 ± 0.3·10-4 cm2 s-1 V-1, 1.5 times higher than the one found for polydimethylsiloxane microchips under the same conditions. As a proof-of-concept for the applicability of OSTE microchips in bioanalysis the immobilization of α-amylase on the polymer surface and the implementation of a Saccharomyces cerevisiae cell counter using contactless conductivity detection are demonstrated.


Subject(s)
Electrophoresis, Microchip/methods , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Saccharomyces cerevisiae/metabolism
2.
Electrophoresis ; 35(16): 2346-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24723304

ABSTRACT

In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.


Subject(s)
Dimethylpolysiloxanes/chemistry , Electrophoresis, Microchip/instrumentation , Polyethylene Glycols/chemistry , Vinyl Compounds/chemistry , Adsorption , Equipment Design , Wettability
3.
Article in English | MEDLINE | ID: mdl-22542689

ABSTRACT

Methacryloxypropyl-modified poly(dimethylsiloxane) rubbers were obtained from poly(dimethylsiloxane), PDMS, and methacryloxypropyltrimethoxysilane, MPTMS, by polycondensation reactions. The modified rubbers, prepared with 20 and 30% (v/v) of MPTMS, were used as substrates for microchannel fabrication by the CO(2) laser ablation technique. Raman imaging spectroscopy was used for the surface characterization, showing the homogeneity of the rubbery material, with uniform distribution of the crosslinking centers. Under the experimental conditions used, damage to the rubber from the CO(2) laser radiation used for the channel engraving was not observed. Correlation maps of the surface were obtained in order to spatially evaluate the modification inside and outside the channels. The correlations between the methacryloxypropyl-modified poly(dimethylsiloxane) rubbers and MPTMS (spectral range of 1800-1550 cm(-1)) and PDMS (spectral range of 820-670 cm(-1)) precursors were higher than 0.95 and 0.99, respectively. In addition, Raman imaging spectroscopy allows monitoring the topography of the fabricated microchannel.


Subject(s)
Dimethylpolysiloxanes/chemistry , Microtechnology/methods , Spectrum Analysis, Raman , Organosilicon Compounds , Rubber/chemistry , Silanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...