Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 32(3): 267-277, 2019 03.
Article in English | MEDLINE | ID: mdl-30589978

ABSTRACT

In 1971, John Sved derived an approximate relationship between linkage disequilibrium (LD) and effective population size for an ideal finite population. This seminal work was extended by Sved and Feldman (Theor Pop Biol 4, 129, 1973) and Weir and Hill (Genetics 95, 477, 1980) who derived additional equations with the same purpose. These equations yield useful estimates of effective population size, as they require a single sample in time. As these estimates of effective population size are now commonly used on a variety of genomic data, from arrays of single nucleotide polymorphisms to whole genome data, some authors have investigated their bias through simulation studies and proposed corrections for different mating systems. However, the cause of the bias remains elusive. Here, we show the problems of using LD as a statistical measure and, analogously, the problems in estimating effective population size from such measure. For that purpose, we compare three commonly used approaches with a transition probability-based method that we develop here. It provides an exact computation of LD. We show here that the bias in the estimates of LD and effective population size are partly due to low-frequency markers, tightly linked markers or to a small total number of crossovers per generation. These biases, however, do not decrease when increasing sample size or using unlinked markers. Our results show the issues of such measures of effective population based on LD and suggest which of the method here studied should be used in empirical studies as well as the optimal distance between markers for such estimates.


Subject(s)
Genetic Techniques , Linkage Disequilibrium , Population Density , Algorithms
2.
Genome Res ; 25(7): 970-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26063737

ABSTRACT

Conservation and breeding programs aim at maintaining the most diversity, thereby avoiding deleterious effects of inbreeding while maintaining enough variation from which traits of interest can be selected. Theoretically, the most diversity is maintained using optimal contributions based on many markers to calculate coancestries, but this can decrease fitness by maintaining linked deleterious variants. The heterogeneous patterns of coancestry displayed in pigs make them an excellent model to test these predictions. We propose methods to measure coancestry and fitness from resequencing data and use them in population management. We analyzed the resequencing data of Sus cebifrons, a highly endangered porcine species from the Philippines, and genotype data from the Pietrain domestic breed. By analyzing the demographic history of Sus cebifrons, we inferred two past bottlenecks that resulted in some inbreeding load. In Pietrain, we analyzed signatures of selection possibly associated with commercial traits. We also simulated the management of each population to assess the performance of different optimal contribution methods to maintain diversity, fitness, and selection signatures. Maximum genetic diversity was maintained using marker-by-marker coancestry, and least using genealogical coancestry. Using a measure of coancestry based on shared segments of the genome achieved the best results in terms of diversity and fitness. However, this segment-based management eliminated signatures of selection. We demonstrate that maintaining both diversity and fitness depends on the genomic distribution of deleterious variants, which is shaped by demographic and selection histories. Our findings show the importance of genomic and next-generation sequencing information in the optimal design of breeding or conservation programs.


Subject(s)
Endangered Species , Genetic Fitness , Genetic Variation , Genome , Genomics , Sus scrofa/genetics , Animals , Genetics, Population , Genomics/methods , Selection, Genetic , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...