Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1234168, 2023.
Article in English | MEDLINE | ID: mdl-37859768

ABSTRACT

Background: Transcranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes. Methods: The data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model. Results: A clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7. Conclusion: These findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy. Clinical Trial Registration: https://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.

2.
Sci Rep ; 12(1): 1440, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087138

ABSTRACT

Neuropathic pain after brachial plexus injury (NPBPI) is a highly disabling clinical condition and is increasingly prevalent due to increased motorcycle accidents. Currently, no randomized controlled trials have evaluated the effectiveness of non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in patients suffering from NPBPI. In this study, we directly compare the efficacy of 10-Hz rTMS and anodal 2 mA tDCS techniques applied over the motor cortex (5 daily consecutive sessions) in 20 patients with NPBPI, allocated into 2 parallel groups (active or sham). The order of the sessions was randomised for each of these treatment groups according to a crossover design and separated by a 30-day interval. Scores for "continuous" and "paroxysmal" pain (primary outcome) were tabulated after the last stimulation day and 30 days after. Secondary outcomes included the improvement in multidimensional aspects of pain, anxiety state and quality of life from a qualitative and quantitative approach. Active rTMS and tDCS were both superior to sham in reducing continuous (p < 0.001) and paroxysmal (p = 0.002; p = 0.02) pain as well as in multidimensional aspects of pain (p = 0.001; p = 0.002) and anxiety state (p = < 0.001; p = 0.005). Our results suggest rTMS and tDCS are able to treat NPBPI with little distinction in pain and anxiety state, which may promote the use of tDCS in brachial plexus injury pain management, as it constitutes an easier and more available technique.Clinical Trial Registration: http://www.ensaiosclinicos.gov.br/, RBR-5xnjbc - Sep 3, 2018.


Subject(s)
Anxiety/therapy , Brachial Plexus/injuries , Neuralgia/therapy , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Adult , Anxiety/etiology , Anxiety/psychology , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Neuralgia/diagnosis , Neuralgia/etiology , Neuralgia/psychology , Pain Management/methods , Pain Measurement/statistics & numerical data , Pilot Projects , Placebos , Quality of Life , Treatment Outcome , Young Adult
3.
Front Neurol ; 11: 568261, 2020.
Article in English | MEDLINE | ID: mdl-33362687

ABSTRACT

Introduction: Although transcranial direct current stimulation (tDCS) and mirror therapy (MT) have benefits in combating chronic pain, there is still no evidence of the effects of the simultaneous application of these techniques in patients with neuropathic pain. This study aims to assess the efficacy of tDCS paired with MT in neuropathic pain after brachial plexus injury. Methods: In a sham controlled, double-blind, parallel-group design, 16 patients were randomized to receive active or sham tDCS administered during mirror therapy. Each patient received 12 treatment sessions, 30 min each, during a period of 4 weeks over M1 contralateral to the side of the injury. Outcome variables were evaluated at baseline and post-treatment using the McGill questionnaire, Brief Pain Inventory, and Medical Outcomes Study 36-Item Short-Form Health Survey. Long-term effects of treatment were evaluated at a 3-month follow-up. Results: An improvement in pain relief and quality of life were observed in both groups (p ≤ 0.05). However, active tDCS and mirror therapy resulted in greater improvements after the endpoint (p ≤ 0.02). No statistically significant differences in the outcome measures were identified among the groups at follow-up (p ≥ 0.12). A significant relationship was found between baseline pain intensity and outcome measures (p ≤ 0.04). Moreover, the results showed that state anxiety is closely linked to post-treatment pain relief (p ≤ 0.05). Conclusion: Active tDCS combined with mirror therapy has a short-term effect of pain relief, however, levels of pain and anxiety at the baseline should be considered. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04385030.

SELECTION OF CITATIONS
SEARCH DETAIL
...