Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 150: 368-379, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30550867

ABSTRACT

This paper aims to stimulate discussion based on the experiences derived from the QUICS project (Quantifying Uncertainty in Integrated Catchment Studies). First it briefly discusses the current state of knowledge on uncertainties in sub-models of integrated catchment models and the existing frameworks for analysing uncertainty. Furthermore, it compares the relative approaches of both building and calibrating fully integrated models or linking separate sub-models. It also discusses the implications of model linkage on overall uncertainty and how to define an acceptable level of model complexity. This discussion includes, whether we should shift our attention from uncertainties due to linkage, when using linked models, to uncertainties in model structure by necessary simplification or by using more parameters. This discussion attempts to address the question as to whether there is an increase in uncertainty by linking these models or if a compensation effect could take place and that overall uncertainty in key water quality parameters actually decreases. Finally, challenges in the application of uncertainty analysis in integrated catchment water quality modelling, as encountered in this project, are discussed and recommendations for future research areas are highlighted.


Subject(s)
Models, Theoretical , Water Quality , Uncertainty
2.
Water Sci Technol ; 69(12): 2423-30, 2014.
Article in English | MEDLINE | ID: mdl-24960003

ABSTRACT

During rainfall events with low return periods (1-20 years) the drainage system can provide some degree of protection to urban areas. The system design is based not only on good hydraulic performance of the surface and the sewer network but also on their linking elements. Although the linking elements are of utmost importance as they allow the exchange of flow between the surface and the sewer network, there is a lack of studies that thoroughly characterize them. One crucial structural part of those elements is the gully. State-of-the-art dual-drainage models often use simplified formulae to replicate the gully hydraulic behaviour that lacks proper validation. This work focuses on simulating, both numerically and experimentally, the hydraulic performance of a 0.6 × 0.3 × 0.3 [m] (L × W × D) gully located inside an 8 × 0.5 × 0.5 [m] rectangular channel. The numerical simulations are conducted with the OpenFOAM toolbox and validated with water level measurements in the Multiple-Linking-Element experimental installation located at the Laboratory of Hydraulics of the University of Coimbra. The results provide a complete three-dimensional insight of the hydraulic behaviour of the flow inside the gully, and discharge coefficient formulae are disclosed that can be directly applied in dual-drainage models as internal boundary conditions.


Subject(s)
Drainage, Sanitary/methods , Rain , Water Movements , Computer Simulation , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...