Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36297440

ABSTRACT

Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.

2.
Int J Nanomedicine ; 17: 751-781, 2022.
Article in English | MEDLINE | ID: mdl-35241912

ABSTRACT

Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.


Subject(s)
COVID-19 , Nanotubes, Carbon , Humans , Immunotherapy , Pandemics/prevention & control , SARS-CoV-2
3.
Int J Nanomedicine ; 16: 5411-5435, 2021.
Article in English | MEDLINE | ID: mdl-34408416

ABSTRACT

Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.


Subject(s)
Nanotubes, Carbon , Vaccines , Adjuvants, Immunologic , Antigens , Nanotechnology
4.
Infect Genet Evol ; 78: 104134, 2020 03.
Article in English | MEDLINE | ID: mdl-31837484

ABSTRACT

OBJECTIVES: This study analyzed Protease-PR and Reverse Transcriptase-RT HIV-1 genomic information entropy metrics among patients under antiretroviral virologic failure, according to the numbers of virologic failures or resistance mutations. METHODS: For this purpose, we used genomic sequences from PR and RT of HIV-1 from a cohort of chronic patients followed up at São Paulo Hospital. RESULTS: Informational entropy proportionally increases with the number of antiretroviral virologic failures in PR and RT (p < .001). Affected regions of PR were related to catalytic and structural functions, such as Fulcrum (K20) Flap (M46) and Cantilever (A71). In RT, this occurred at Fingers (E44) and Palm (K219). Informational entropy increases according to the number of resistance mutations in PR and RT (p < .001). Higher PR entropy was proportional to the resistance mutation numbers in Fulcrum (L10), Active site (L24) Flap (M46), Cantilever (L63) and near Interface (L90). In RT, they related to regions responsible for protein stability such as Fingers (T39) and Palm (L100). CONCLUSIONS: The antiretroviral selective pressure affects HIV genomic informational entropy at the PR and RT regions, leading to the emergence of more unstable virions. Mapping the three-dimensional structure in these HIV-1 proteins is relevant to designing new antiretroviral targeting resistant strains.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/genetics , Drug Resistance, Viral/genetics , Genome, Viral , HIV Infections/virology , HIV Protease/chemistry , HIV Reverse Transcriptase/chemistry , HIV-1/enzymology , HIV-1/isolation & purification , Humans , Mutation , Treatment Failure
5.
Mol Diagn Ther ; 22(6): 703-715, 2018 12.
Article in English | MEDLINE | ID: mdl-30368765

ABSTRACT

Malignant melanoma is an aggressive skin cancer with limited therapeutic options. Cancer is the second largest cause of death in society and one of the most difficult diseases to treat. Advances in biotechnology have enabled the current use of nanotechnology via the application of nanomaterials, especially as drug delivery systems for the transportation of very small particles. In this context, carbon nanotubes, with a potential role in the diagnosis and treatment of melanoma, are still an emerging research field. Their properties have been extensively studied for the use of antineoplastics drugs, as well as for DNA and RNA interference for the treatment of cancer. However, the most important challenge in nanomedicine is to decrease the toxicity and increase the biocompatibility of the nanomaterials used to transport therapeutic molecules. In this sense, this article addresses the recent advances in the use of carbon nanotubes in melanoma therapy and highlights the opportunities and challenges in this area. The advances and challenges involving these topics are essential to the success of nanoconjugate systems, and studies improving the comprehension of these nanosystems contribute to the development of specific antitumor therapies.


Subject(s)
Melanoma/therapy , Nanotubes, Carbon/chemistry , Animals , Humans , Nanotechnology , RNA Interference/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...