Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 642267, 2021.
Article in English | MEDLINE | ID: mdl-33679679

ABSTRACT

The available cell-adapted hepatitis A virus (HAV) strains show a very slow replication phenotype hampering the affordable production of antigen. A fast-growing strain characterized by the occurrence of mutations in the internal ribosome entry site (IRES), combined with changes in the codon composition has been selected in our laboratory. A characterization of the IRES activity of this fast-growing strain (HM175-HP; HP) vs. its parental strain (HM175; L0) was assessed in two cell substrates used in vaccine production (MRC-5 and Vero cells) compared with the FRhK-4 cell line in which its selection was performed. The HP-derived IRES was significantly more active than the L0-derived IRES in all cells tested and both IRES were more active in the FRhK-4 cells. The translation efficiency of the HP-derived IRES was also much higher than the L0-derived IRES, particularly, in genes with a HP codon usage background. These results correlated with a higher virus production in a shorter time for the HP strain compared to the L0 strain in any of the three cell lines tested, and of both strains in the FRhK-4 cells compared to Vero and MRC-5 cells. The addition of wortmannin resulted in the increase of infectious viruses and antigen in the supernatant of FRhK-4 infected cells, independently of the strain. Finally, the replication of both strains in a clone of FRhK-4 cells adapted to grow with synthetic sera was optimal and again the HP strain showed higher yields.

2.
Genome Biol Evol ; 11(9): 2439-2456, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31290967

ABSTRACT

Hepatoviruses show an intriguing deviated codon usage, suggesting an evolutionary signature. Abundant and rare codons in the cellular genome are scarce in the human hepatitis A virus (HAV) genome, while intermediately abundant host codons are abundant in the virus. Genotype-phenotype maps, or fitness landscapes, are a means of representing a genotype position in sequence space and uncovering how genotype relates to phenotype and fitness. Using genotype-phenotype maps of the translation efficiency, we have shown the critical role of the HAV capsid codon composition in regulating translation and determining its robustness. Adaptation to an environmental perturbation such as the artificial induction of cellular shutoff-not naturally occurring in HAV infection-involved movements in the sequence space and dramatic changes of the translation efficiency. Capsid rare codons, including abundant and rare codons of the cellular genome, slowed down the translation efficiency in conditions of no cellular shutoff. In contrast, rare capsid codons that are abundant in the cellular genome were efficiently translated in conditions of shutoff. Capsid regions very rich in slowly translated codons adapt to shutoff through sequence space movements from positions with highly robust translation to others with diminished translation robustness. These movements paralleled decreases of the capsid physical and biological robustness, and resulted in the diversification of capsid phenotypes. The deviated codon usage of extant hepatoviruses compared with that of their hosts may suggest the occurrence of a virus ancestor with an optimized codon usage with respect to an unknown ancient host.


Subject(s)
Capsid Proteins/genetics , Hepatitis A virus/genetics , Hepatitis A virus/physiology , Peptide Chain Elongation, Translational , Adaptation, Physiological , Capsid Proteins/metabolism , Codon , Humans , Mutation , Protein Biosynthesis , Protein Folding , RNA, Transfer/metabolism
3.
Article in English | MEDLINE | ID: mdl-29530949

ABSTRACT

Codon usage bias is universal to all genomes. Hepatitis A virus (HAV) codon usage is highly biased and deoptimized with respect to its host. Accordingly, HAV is unable to induce cellular translational shutoff and its internal ribosome entry site (IRES) is inefficient. Codon usage deoptimization may be seen as a hawk (host cell) versus dove (HAV) game strategy for accessing transfer RNA (tRNA). HAV avoids use of abundant host cell codons and thereby eludes competition for the corresponding tRNAs. Instead, codons that are abundant or rare in cellular messenger RNAs (mRNAs) are used relatively rarely in its genome, although intermediately abundant host cell codons are abundant in the viral genome. Rare codons in the capsid coding region slow down the translation elongation rate, and in doing so intrinsically modulate capsid folding, which is critical to the stability of a virus transmitted through the fecal-oral route. HAV is a paradigmatic example of what has been proposed as a codon usage "code" for protein structure.


Subject(s)
Codon/genetics , Hepatitis A virus/genetics , Capsid , Game Theory , RNA, Transfer/genetics
4.
Sci Rep ; 6: 35962, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808108

ABSTRACT

Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential.


Subject(s)
Genome, Viral , Genomics/methods , Quasispecies/genetics , Virus Replication , Viruses/growth & development , DNA Shuffling , Humans , Phenotype , Viruses/genetics
5.
Int J Mol Sci ; 16(4): 6842-54, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25815599

ABSTRACT

A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999-2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002-2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.


Subject(s)
Disease Outbreaks/prevention & control , Hepatitis A Virus, Human/genetics , Hepatitis A/epidemiology , Hepatitis A/prevention & control , Mass Vaccination/methods , Adult , Child , Genotype , Genotyping Techniques , Hepatitis A/virology , Hepatitis A Virus, Human/classification , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/analysis , Spain/epidemiology , Young Adult
6.
PLoS One ; 7(2): e31016, 2012.
Article in English | MEDLINE | ID: mdl-22328925

ABSTRACT

Previous works have documented the contribution of different IL28B-associated SNPs to spontaneous HCV clearance. This study investigated the effect of different interleukin (IL) 28B genetic variants on interferon (IFN)-based therapy response. We genotyped eight IL28B single-nucleotide polymorphisms (SNPs) in a cohort of 197 hepatitis C virus (HCV)/human immunodeficiency virus type 1 (HIV-1) coinfected patients from our clinic unit who received combined pegylated (peg)-IFN-α and ribavirin (RBV) therapy. This analysis included the two strongest tag predictors for HCV clearance, rs8099917 and rs12979860, and four causal variants (rs4803219, rs28416813, rs8103142, and rs4803217) located in the IL28B promoter, coding, and 3'-untranslated regions. Haplotypes carrying the major alleles at IL28B SNPs were highly associated with sustained virological responses (SVRs) after treatment with peg-IFN-α and RBV [odds ratio (OR) = 2.5, 95% confidence interval (CI) = 1.6-4.0, 4.0×10(-5)]. Three causal SNP genotypes (rs28416813, rs8103142, and rs4803217) displayed the highest association with SVRs (OR = 3.7, 95% CI = 2.0-6.7, p = 1.3×10(-5)). All four causal variants were in high linkage disequilibrium, both among themselves (r(2)≥0.94) and with the rs12979860 variant (r(2)≥0.92). In contrast, rs8099917 was in low linkage disequilibrium with the four causal variants (r(2)≤0.45) and with the rs12979860 variant (r(2) = 0.45). These results demonstrate that rs12979860, compared to rs8099917, may be a better predictor of response to the peg-IFN/RBV treatment among HCV/HIV-1 coinfected patients. Moreover, causal IL28B variants are strongly associated with treatment SVRs.


Subject(s)
Antiviral Agents/therapeutic use , HIV Infections/drug therapy , Hepatitis C/drug therapy , Interferon-alpha/therapeutic use , Interleukins/genetics , Ribavirin/therapeutic use , Genotype , HIV Infections/genetics , HIV Infections/virology , HIV-1/drug effects , HIV-1/pathogenicity , Haplotypes , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatitis C/virology , Humans , Interferons , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...